Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 24;68(Pt 11):o3203. doi: 10.1107/S1600536812042869

2-Cyano-N′-[1-(pyridin-2-yl)ethyl­idene]acetohydrazide

Xiao-Yi Zhang a, Xiao-Lin Han b, Zhi-Bin Qian c,*
PMCID: PMC3515292  PMID: 23284512

Abstract

In the title compound, C10H10N4O, the dihedral angle between the pyridine ring and the –C=O(CH2)CN group is 24.08 (12)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R 2 2(8) loops.

Related literature  

For the biological activity of hydrazone compounds, see: Rauf et al. (2008); Zhang et al. (2012). For related structures, see: Taha et al. (2012); Kargar et al. (2012); Rassem et al. (2012).graphic file with name e-68-o3203-scheme1.jpg

Experimental  

Crystal data  

  • C10H10N4O

  • M r = 202.22

  • Monoclinic, Inline graphic

  • a = 8.192 (2) Å

  • b = 14.520 (2) Å

  • c = 8.7340 (17) Å

  • β = 98.466 (2)°

  • V = 1027.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.985, T max = 0.989

  • 6189 measured reflections

  • 2222 independent reflections

  • 1128 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.143

  • S = 1.03

  • 2222 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812042869/hb6969sup1.cif

e-68-o3203-sup1.cif (14KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042869/hb6969Isup2.hkl

e-68-o3203-Isup2.hkl (109.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042869/hb6969Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.90 (1) 2.05 (1) 2.929 (2) 167 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The intensity data were collected by Xiao-Lin Han under the guidance of Mr Yanglu Zhu at Dalian Institute of Technology.

supplementary crystallographic information

Comment

Hydrazone compounds bearing biological active functional groups -C(O)-NH-N=CH- are readily prepared by the condensation reactions of hydrazines with various aldehydes (e.g. Rauf et al., 2008; Zhang et al., 2012). In the present work, the title new hydrazone compound, derived from 2-acetylpyridine and cyanoacetohydrazide, is reported.

The molecule of the compound adopts a trans conformation about the C6=N2 double bond (Fig. 1). The torsion angles of C6-N2-N3-C8, N2-N3-C8-C9, and N3-C8-C9-C10 are 4.8 (3), 5.1 (3), and 6.5 (3)°, respectively. The bond lengths are comparable to those in similar compounds (Taha et al., 2012; Kargar et al., 2012; Rassem et al., 2012). The crystal structure of the compound features N—H···O hydrogen bonds (Table 1), generating dimers (Fig. 2).

Experimental

2-Acetylpyridine (1.0 mmol, 0.121 g) and cyanoacetohydrazide (1.0 mmol, 0.991 g) were mixed and stirred in methanol (50 mL) at room temperature for 1 h. Colorless block-shaped single crystals were obtained after slow evaporation of the solution in air for a few days.

Refinement

H3A attached to N3 was located in a difference Fourier map and was refined isotropically, with N—H distance of 0.90 (1) Å. The remaining hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å for aromatic and CH2 and 0.96 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with 30% thermal ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing diagram of the title compound, viewed down the c axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C10H10N4O F(000) = 424
Mr = 202.22 Dx = 1.307 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.192 (2) Å Cell parameters from 1009 reflections
b = 14.520 (2) Å θ = 2.7–24.5°
c = 8.7340 (17) Å µ = 0.09 mm1
β = 98.466 (2)° T = 298 K
V = 1027.6 (4) Å3 Block, colorless
Z = 4 0.17 × 0.13 × 0.12 mm

Data collection

Bruker SMART CCD diffractometer 2222 independent reflections
Radiation source: fine-focus sealed tube 1128 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
ω scans θmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→10
Tmin = 0.985, Tmax = 0.989 k = −18→12
6189 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.0523P] where P = (Fo2 + 2Fc2)/3
2222 reflections (Δ/σ)max < 0.001
140 parameters Δρmax = 0.14 e Å3
1 restraint Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3684 (2) 0.07074 (13) 0.3032 (2) 0.0623 (6)
N2 0.6478 (2) 0.10204 (13) 0.0382 (2) 0.0537 (5)
N3 0.7946 (2) 0.06818 (13) 0.0033 (2) 0.0583 (5)
N4 0.8363 (3) 0.17583 (17) −0.4976 (3) 0.0901 (8)
O1 0.97937 (19) 0.06914 (12) −0.16256 (18) 0.0727 (5)
C1 0.4400 (3) 0.11185 (15) 0.1938 (2) 0.0504 (6)
C2 0.3705 (3) 0.18833 (17) 0.1157 (3) 0.0667 (7)
H2 0.4223 0.2167 0.0404 0.080*
C3 0.2244 (3) 0.22169 (19) 0.1506 (3) 0.0805 (9)
H3 0.1764 0.2733 0.0993 0.097*
C4 0.1494 (3) 0.17926 (19) 0.2605 (3) 0.0714 (7)
H4 0.0494 0.2006 0.2851 0.086*
C5 0.2256 (3) 0.10466 (18) 0.3330 (3) 0.0686 (7)
H5 0.1747 0.0755 0.4082 0.082*
C6 0.5976 (3) 0.07141 (15) 0.1606 (2) 0.0512 (6)
C7 0.6822 (3) −0.00024 (17) 0.2651 (3) 0.0675 (7)
H7A 0.6830 −0.0574 0.2098 0.101*
H7B 0.6246 −0.0083 0.3522 0.101*
H7C 0.7936 0.0187 0.3006 0.101*
C8 0.8458 (3) 0.09339 (15) −0.1295 (3) 0.0554 (6)
C9 0.7285 (3) 0.15165 (16) −0.2381 (2) 0.0587 (6)
H9A 0.6215 0.1218 −0.2570 0.070*
H9B 0.7146 0.2109 −0.1904 0.070*
C10 0.7896 (3) 0.16532 (16) −0.3836 (3) 0.0594 (6)
H3A 0.860 (2) 0.0304 (13) 0.066 (2) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0625 (14) 0.0709 (13) 0.0578 (12) 0.0094 (11) 0.0226 (10) 0.0093 (10)
N2 0.0449 (11) 0.0645 (13) 0.0536 (11) 0.0050 (9) 0.0137 (9) 0.0024 (9)
N3 0.0490 (13) 0.0724 (14) 0.0548 (12) 0.0110 (10) 0.0125 (9) 0.0116 (10)
N4 0.0921 (18) 0.1099 (19) 0.0729 (15) 0.0051 (14) 0.0278 (13) 0.0163 (14)
O1 0.0543 (11) 0.0962 (13) 0.0717 (11) 0.0180 (9) 0.0226 (9) 0.0185 (9)
C1 0.0485 (14) 0.0581 (14) 0.0448 (12) −0.0002 (12) 0.0069 (10) −0.0003 (11)
C2 0.0622 (17) 0.0784 (18) 0.0631 (15) 0.0105 (14) 0.0215 (13) 0.0169 (13)
C3 0.0741 (19) 0.091 (2) 0.0809 (19) 0.0283 (16) 0.0261 (16) 0.0236 (16)
C4 0.0623 (17) 0.0910 (19) 0.0649 (16) 0.0209 (15) 0.0232 (14) 0.0064 (15)
C5 0.0664 (17) 0.0843 (19) 0.0610 (15) 0.0076 (15) 0.0291 (13) 0.0074 (14)
C6 0.0486 (14) 0.0581 (14) 0.0471 (12) −0.0015 (11) 0.0081 (11) 0.0011 (11)
C7 0.0607 (17) 0.0816 (17) 0.0616 (15) 0.0133 (14) 0.0131 (12) 0.0181 (13)
C8 0.0481 (15) 0.0633 (16) 0.0568 (14) 0.0015 (12) 0.0143 (12) 0.0027 (12)
C9 0.0536 (15) 0.0676 (16) 0.0564 (13) 0.0062 (12) 0.0132 (11) 0.0058 (12)
C10 0.0594 (16) 0.0618 (15) 0.0583 (14) 0.0026 (12) 0.0131 (13) 0.0045 (12)

Geometric parameters (Å, º)

N1—C5 1.331 (3) C3—H3 0.9300
N1—C1 1.333 (2) C4—C5 1.359 (3)
N2—C6 1.280 (2) C4—H4 0.9300
N2—N3 1.374 (2) C5—H5 0.9300
N3—C8 1.341 (3) C6—C7 1.486 (3)
N3—H3A 0.899 (10) C7—H7A 0.9600
N4—C10 1.128 (3) C7—H7B 0.9600
O1—C8 1.224 (2) C7—H7C 0.9600
C1—C2 1.382 (3) C8—C9 1.506 (3)
C1—C6 1.486 (3) C9—C10 1.446 (3)
C2—C3 1.366 (3) C9—H9A 0.9700
C2—H2 0.9300 C9—H9B 0.9700
C3—C4 1.361 (3)
C5—N1—C1 117.8 (2) N2—C6—C1 114.9 (2)
C6—N2—N3 117.41 (19) N2—C6—C7 125.31 (19)
C8—N3—N2 119.3 (2) C1—C6—C7 119.78 (18)
C8—N3—H3A 117.5 (15) C6—C7—H7A 109.5
N2—N3—H3A 123.2 (15) C6—C7—H7B 109.5
N1—C1—C2 121.4 (2) H7A—C7—H7B 109.5
N1—C1—C6 116.7 (2) C6—C7—H7C 109.5
C2—C1—C6 121.88 (19) H7A—C7—H7C 109.5
C3—C2—C1 119.1 (2) H7B—C7—H7C 109.5
C3—C2—H2 120.5 O1—C8—N3 122.0 (2)
C1—C2—H2 120.5 O1—C8—C9 121.5 (2)
C4—C3—C2 119.9 (2) N3—C8—C9 116.48 (19)
C4—C3—H3 120.1 C10—C9—C8 111.03 (18)
C2—C3—H3 120.1 C10—C9—H9A 109.4
C5—C4—C3 117.7 (2) C8—C9—H9A 109.4
C5—C4—H4 121.1 C10—C9—H9B 109.4
C3—C4—H4 121.1 C8—C9—H9B 109.4
N1—C5—C4 124.1 (2) H9A—C9—H9B 108.0
N1—C5—H5 118.0 N4—C10—C9 179.6 (3)
C4—C5—H5 118.0

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O1i 0.90 (1) 2.05 (1) 2.929 (2) 167 (2)

Symmetry code: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6969).

References

  1. Bruker (1998). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o2118–o2119. [DOI] [PMC free article] [PubMed]
  3. Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o2279. [DOI] [PMC free article] [PubMed]
  4. Rauf, A., Banday, M. R. & Mattoo, R. H. (2008). Acta Chim. Slov. 55, 448-452.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2846. [DOI] [PMC free article] [PubMed]
  8. Zhang, M., Xian, D.-M., Li, H.-H., Zhang, J.-C. & You, Z.-L. (2012). Aust. J. Chem. 65, 343–350.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812042869/hb6969sup1.cif

e-68-o3203-sup1.cif (14KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042869/hb6969Isup2.hkl

e-68-o3203-Isup2.hkl (109.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042869/hb6969Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES