Abstract
In the title compound, C7H6ClNO3S, the nitro group forms a dihedral angle of 2.7 (4)° with the benzene ring. The bond-angle sum at the S atom is 303.7°. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming layers lying parallel to (-101).
Related literature
For the biological and pharmacological activity of sulfoxides, see, for example: Melzig et al. (2009 ▶); Huang et al. (2010 ▶). For related structures, see: Yan (2010 ▶); Kobayashi et al. (2003 ▶).
Experimental
Crystal data
C7H6ClNO3S
M r = 219.65
Monoclinic,
a = 12.2394 (5) Å
b = 5.5009 (2) Å
c = 14.5537 (11) Å
β = 116.631 (4)°
V = 875.92 (9) Å3
Z = 4
Mo Kα radiation
μ = 0.65 mm−1
T = 180 K
0.23 × 0.20 × 0.18 mm
Data collection
Agilent Xcalibur (Eos, Gemini ultra) diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011 ▶) T min = 0.900, T max = 1.000
10209 measured reflections
2172 independent reflections
1799 reflections with I > 2σ(I)
R int = 0.024
Refinement
R[F 2 > 2σ(F 2)] = 0.026
wR(F 2) = 0.071
S = 1.05
2172 reflections
118 parameters
H-atom parameters constrained
Δρmax = 0.35 e Å−3
Δρmin = −0.31 e Å−3
Data collection: CrysAlis PRO (Agilent, 2011 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and DIAMOND (Brandenburg & Berndt, 2001 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812043553/hb6974sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043553/hb6974Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812043553/hb6974Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C4—H4⋯O12i | 0.95 | 2.44 | 3.384 (2) | 173 |
| C7—H7A⋯O1ii | 0.99 | 2.36 | 3.2478 (18) | 149 |
| C7—H7B⋯O1iii | 0.99 | 2.50 | 3.332 (2) | 142 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
This work was supported by the Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, Algeria. Thanks are due to MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique and ANDRU (l’Agence Nationale pour le Développement de la Recherche Universitaire) for financial support via the PNR programm.
supplementary crystallographic information
Comment
The use of sulfoxides as pharmaceutical has shown promise in recent years (e.g. Melzig et al., 2009 and Huang et al. 2010). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic sulfanilamide complexes we have synthesized and determined the crystal structure of the title compound (I). The molecular geometry and the atom-numbering scheme are shown in Fig 1. In the crystal structure of the title compound, there are two pairs of molecules enantiomers in the unit cell. In each molecule, the nitro group forms a dihedral angle of 2.7 (4)° with the phenyl ring very different to that found in 2-(methylsulfinyl)benzamide (25.6°) (Yan, 2010) and in benzamide (26.31°) (Kobayashi et al., 2003). The crystal packing is stabilized by weak C—H···O hydrogen bonds (Fig. 2) forming non-interacting layers parallel to (-101) planes.
Experimental
O-chloronitrobenzene (1.60 g, 10 mmol) and thioacetic acid (0.80 g, 10 mmol) were dissolved in 75 ml aqua ethanol solution (25 ml water + 50 ml ethanol) and refluxed for 3 h under continuous stirring. Then the obtained product was evaporated at room temperature to dryness. The residue was diluted in 50 ml pure ethanol. After few days, orange bocks were recovered, as the solvent slowly evaporated.
Refinement
All non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å and Cmethylene—Hmethylene = 0.99 Å. Uiso(Haryl/methylene) = 1.2Ueq(Caryl/Cmethylene).
Figures
Fig. 1.
Drawing of asymetric unit of, (I), with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Diagram packing of (I) viwed via b axis showing alterning layers parallel to (-101) planes.
Crystal data
| C7H6ClNO3S | F(000) = 448 |
| Mr = 219.65 | Dx = 1.666 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 6334 reflections |
| a = 12.2394 (5) Å | θ = 3.3–29.2° |
| b = 5.5009 (2) Å | µ = 0.65 mm−1 |
| c = 14.5537 (11) Å | T = 180 K |
| β = 116.631 (4)° | Block, orange |
| V = 875.92 (9) Å3 | 0.23 × 0.20 × 0.18 mm |
| Z = 4 |
Data collection
| Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 2172 independent reflections |
| Graphite monochromator | 1799 reflections with I > 2σ(I) |
| Detector resolution: 16.1978 pixels mm-1 | Rint = 0.024 |
| ω scans | θmax = 29.2°, θmin = 3.7° |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −16→15 |
| Tmin = 0.900, Tmax = 1.000 | k = −7→7 |
| 10209 measured reflections | l = −19→19 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.071 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1537P] where P = (Fo2 + 2Fc2)/3 |
| 2172 reflections | (Δ/σ)max = 0.002 |
| 118 parameters | Δρmax = 0.35 e Å−3 |
| 0 restraints | Δρmin = −0.31 e Å−3 |
Special details
| Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent, 2011) |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 1.06418 (4) | 0.73513 (8) | 0.59930 (3) | 0.03956 (13) | |
| S1 | 0.81710 (3) | 0.81595 (6) | 0.57165 (3) | 0.02049 (10) | |
| O1 | 0.85724 (9) | 1.04534 (18) | 0.63222 (8) | 0.0286 (2) | |
| O11 | 0.71137 (9) | 0.42553 (19) | 0.45234 (7) | 0.0271 (2) | |
| O12 | 0.58622 (10) | 0.15605 (19) | 0.45752 (8) | 0.0312 (3) | |
| N1 | 0.65255 (10) | 0.3330 (2) | 0.49290 (9) | 0.0204 (2) | |
| C1 | 0.73727 (13) | 0.7493 (3) | 0.71720 (11) | 0.0256 (3) | |
| H1 | 0.7829 | 0.8934 | 0.7453 | 0.031* | |
| C2 | 0.67575 (14) | 0.6385 (3) | 0.76600 (11) | 0.0298 (3) | |
| H2 | 0.6802 | 0.7065 | 0.8276 | 0.036* | |
| C3 | 0.60801 (13) | 0.4300 (3) | 0.72587 (11) | 0.0290 (3) | |
| H3 | 0.5672 | 0.354 | 0.7604 | 0.035* | |
| C4 | 0.59970 (12) | 0.3319 (3) | 0.63530 (11) | 0.0238 (3) | |
| H4 | 0.5518 | 0.1908 | 0.6063 | 0.029* | |
| C5 | 0.66235 (12) | 0.4428 (2) | 0.58775 (10) | 0.0186 (3) | |
| C6 | 0.73266 (11) | 0.6514 (2) | 0.62775 (10) | 0.0188 (3) | |
| C7 | 0.94884 (12) | 0.6136 (3) | 0.62770 (11) | 0.0231 (3) | |
| H7A | 0.9786 | 0.6027 | 0.703 | 0.028* | |
| H7B | 0.926 | 0.4484 | 0.5982 | 0.028* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0267 (2) | 0.0429 (3) | 0.0519 (3) | −0.00401 (16) | 0.02018 (18) | 0.00852 (19) |
| S1 | 0.02044 (17) | 0.01600 (17) | 0.02053 (17) | −0.00089 (12) | 0.00517 (13) | 0.00213 (13) |
| O1 | 0.0302 (5) | 0.0156 (5) | 0.0326 (5) | −0.0035 (4) | 0.0074 (5) | −0.0018 (4) |
| O11 | 0.0317 (5) | 0.0286 (6) | 0.0247 (5) | −0.0052 (4) | 0.0161 (4) | −0.0025 (4) |
| O12 | 0.0313 (6) | 0.0277 (6) | 0.0311 (6) | −0.0120 (4) | 0.0109 (5) | −0.0111 (5) |
| N1 | 0.0192 (5) | 0.0183 (6) | 0.0205 (5) | 0.0001 (4) | 0.0061 (5) | −0.0008 (4) |
| C1 | 0.0237 (7) | 0.0241 (7) | 0.0235 (7) | 0.0014 (6) | 0.0057 (6) | −0.0049 (6) |
| C2 | 0.0300 (8) | 0.0382 (9) | 0.0207 (7) | 0.0071 (6) | 0.0110 (6) | −0.0023 (6) |
| C3 | 0.0263 (7) | 0.0370 (9) | 0.0270 (7) | 0.0044 (6) | 0.0148 (6) | 0.0079 (7) |
| C4 | 0.0210 (7) | 0.0228 (7) | 0.0271 (7) | 0.0004 (5) | 0.0103 (6) | 0.0032 (6) |
| C5 | 0.0171 (6) | 0.0184 (6) | 0.0178 (6) | 0.0033 (5) | 0.0054 (5) | 0.0006 (5) |
| C6 | 0.0177 (6) | 0.0171 (6) | 0.0192 (6) | 0.0033 (5) | 0.0061 (5) | 0.0022 (5) |
| C7 | 0.0191 (6) | 0.0206 (6) | 0.0279 (7) | 0.0001 (5) | 0.0091 (5) | 0.0043 (6) |
Geometric parameters (Å, º)
| Cl1—C7 | 1.7703 (14) | C2—C3 | 1.382 (2) |
| S1—O1 | 1.4908 (10) | C2—H2 | 0.95 |
| S1—C6 | 1.8196 (14) | C3—C4 | 1.385 (2) |
| S1—C7 | 1.8236 (14) | C3—H3 | 0.95 |
| O11—N1 | 1.2276 (15) | C4—C5 | 1.3837 (19) |
| O12—N1 | 1.2234 (15) | C4—H4 | 0.95 |
| N1—C5 | 1.4618 (17) | C5—C6 | 1.3953 (18) |
| C1—C2 | 1.386 (2) | C7—H7A | 0.99 |
| C1—C6 | 1.3865 (19) | C7—H7B | 0.99 |
| C1—H1 | 0.95 | ||
| O1—S1—C6 | 104.99 (6) | C5—C4—C3 | 118.91 (13) |
| O1—S1—C7 | 105.15 (6) | C5—C4—H4 | 120.5 |
| C6—S1—C7 | 93.53 (6) | C3—C4—H4 | 120.5 |
| O12—N1—O11 | 123.31 (12) | C4—C5—C6 | 122.02 (12) |
| O12—N1—C5 | 118.97 (11) | C4—C5—N1 | 117.44 (12) |
| O11—N1—C5 | 117.72 (11) | C6—C5—N1 | 120.53 (12) |
| C2—C1—C6 | 120.49 (14) | C1—C6—C5 | 117.97 (13) |
| C2—C1—H1 | 119.8 | C1—C6—S1 | 115.84 (11) |
| C6—C1—H1 | 119.8 | C5—C6—S1 | 126.16 (10) |
| C3—C2—C1 | 120.60 (13) | Cl1—C7—S1 | 107.62 (7) |
| C3—C2—H2 | 119.7 | Cl1—C7—H7A | 110.2 |
| C1—C2—H2 | 119.7 | S1—C7—H7A | 110.2 |
| C2—C3—C4 | 119.97 (13) | Cl1—C7—H7B | 110.2 |
| C2—C3—H3 | 120 | S1—C7—H7B | 110.2 |
| C4—C3—H3 | 120 | H7A—C7—H7B | 108.5 |
| C6—C1—C2—C3 | −0.6 (2) | C4—C5—C6—C1 | −0.9 (2) |
| C1—C2—C3—C4 | −0.9 (2) | N1—C5—C6—C1 | 179.16 (12) |
| C2—C3—C4—C5 | 1.5 (2) | C4—C5—C6—S1 | −179.03 (10) |
| C3—C4—C5—C6 | −0.6 (2) | N1—C5—C6—S1 | 1.02 (18) |
| C3—C4—C5—N1 | 179.38 (12) | O1—S1—C6—C1 | −8.09 (12) |
| O12—N1—C5—C4 | 3.01 (18) | C7—S1—C6—C1 | 98.62 (11) |
| O11—N1—C5—C4 | −177.48 (12) | O1—S1—C6—C5 | 170.09 (11) |
| O12—N1—C5—C6 | −177.04 (12) | C7—S1—C6—C5 | −83.20 (12) |
| O11—N1—C5—C6 | 2.47 (18) | O1—S1—C7—Cl1 | −67.86 (9) |
| C2—C1—C6—C5 | 1.4 (2) | C6—S1—C7—Cl1 | −174.44 (8) |
| C2—C1—C6—S1 | 179.78 (11) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C4—H4···O12i | 0.95 | 2.44 | 3.384 (2) | 173 |
| C7—H7A···O1ii | 0.99 | 2.36 | 3.2478 (18) | 149 |
| C7—H7B···O1iii | 0.99 | 2.50 | 3.332 (2) | 142 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, y−1/2, −z+3/2; (iii) x, y−1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6974).
References
- Agilent (2011). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
- Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Huang, J.-Y., Li, S.-J. & Wang, Y.-G. (2010). J. Carbohydr. Chem. 29, 142–153.
- Kobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035–3045. [DOI] [PubMed]
- Melzig, L., Rauhut, C. B. & Knochel, P. (2009). Chem. Commun. pp. 3536–3538. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Yan, Z. (2010). Acta Cryst. E66, o3311. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812043553/hb6974sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043553/hb6974Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812043553/hb6974Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


