Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 27;68(Pt 11):o3207. doi: 10.1107/S1600536812043553

1-Chloro­methyl­sulfinyl-2-nitro­benzene

Sabrina Benmebarek a, Mhamed Boudraa a, Sofiane Bouacida a,b,*, Jean-Claude Daran c
PMCID: PMC3515295  PMID: 23284515

Abstract

In the title compound, C7H6ClNO3S, the nitro group forms a dihedral angle of 2.7 (4)° with the benzene ring. The bond-angle sum at the S atom is 303.7°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming layers lying parallel to (-101).

Related literature  

For the biological and pharmacological activity of sulfoxides, see, for example: Melzig et al. (2009); Huang et al. (2010). For related structures, see: Yan (2010); Kobayashi et al. (2003).graphic file with name e-68-o3207-scheme1.jpg

Experimental  

Crystal data  

  • C7H6ClNO3S

  • M r = 219.65

  • Monoclinic, Inline graphic

  • a = 12.2394 (5) Å

  • b = 5.5009 (2) Å

  • c = 14.5537 (11) Å

  • β = 116.631 (4)°

  • V = 875.92 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 180 K

  • 0.23 × 0.20 × 0.18 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.900, T max = 1.000

  • 10209 measured reflections

  • 2172 independent reflections

  • 1799 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.071

  • S = 1.05

  • 2172 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812043553/hb6974sup1.cif

e-68-o3207-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043553/hb6974Isup2.hkl

e-68-o3207-Isup2.hkl (104.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043553/hb6974Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O12i 0.95 2.44 3.384 (2) 173
C7—H7A⋯O1ii 0.99 2.36 3.2478 (18) 149
C7—H7B⋯O1iii 0.99 2.50 3.332 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, Algeria. Thanks are due to MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique and ANDRU (l’Agence Nationale pour le Développement de la Recherche Universitaire) for financial support via the PNR programm.

supplementary crystallographic information

Comment

The use of sulfoxides as pharmaceutical has shown promise in recent years (e.g. Melzig et al., 2009 and Huang et al. 2010). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic sulfanilamide complexes we have synthesized and determined the crystal structure of the title compound (I). The molecular geometry and the atom-numbering scheme are shown in Fig 1. In the crystal structure of the title compound, there are two pairs of molecules enantiomers in the unit cell. In each molecule, the nitro group forms a dihedral angle of 2.7 (4)° with the phenyl ring very different to that found in 2-(methylsulfinyl)benzamide (25.6°) (Yan, 2010) and in benzamide (26.31°) (Kobayashi et al., 2003). The crystal packing is stabilized by weak C—H···O hydrogen bonds (Fig. 2) forming non-interacting layers parallel to (-101) planes.

Experimental

O-chloronitrobenzene (1.60 g, 10 mmol) and thioacetic acid (0.80 g, 10 mmol) were dissolved in 75 ml aqua ethanol solution (25 ml water + 50 ml ethanol) and refluxed for 3 h under continuous stirring. Then the obtained product was evaporated at room temperature to dryness. The residue was diluted in 50 ml pure ethanol. After few days, orange bocks were recovered, as the solvent slowly evaporated.

Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å and Cmethylene—Hmethylene = 0.99 Å. Uiso(Haryl/methylene) = 1.2Ueq(Caryl/Cmethylene).

Figures

Fig. 1.

Fig. 1.

Drawing of asymetric unit of, (I), with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Diagram packing of (I) viwed via b axis showing alterning layers parallel to (-101) planes.

Crystal data

C7H6ClNO3S F(000) = 448
Mr = 219.65 Dx = 1.666 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6334 reflections
a = 12.2394 (5) Å θ = 3.3–29.2°
b = 5.5009 (2) Å µ = 0.65 mm1
c = 14.5537 (11) Å T = 180 K
β = 116.631 (4)° Block, orange
V = 875.92 (9) Å3 0.23 × 0.20 × 0.18 mm
Z = 4

Data collection

Agilent Xcalibur (Eos, Gemini ultra) diffractometer 2172 independent reflections
Graphite monochromator 1799 reflections with I > 2σ(I)
Detector resolution: 16.1978 pixels mm-1 Rint = 0.024
ω scans θmax = 29.2°, θmin = 3.7°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) h = −16→15
Tmin = 0.900, Tmax = 1.000 k = −7→7
10209 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1537P] where P = (Fo2 + 2Fc2)/3
2172 reflections (Δ/σ)max = 0.002
118 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent, 2011)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.06418 (4) 0.73513 (8) 0.59930 (3) 0.03956 (13)
S1 0.81710 (3) 0.81595 (6) 0.57165 (3) 0.02049 (10)
O1 0.85724 (9) 1.04534 (18) 0.63222 (8) 0.0286 (2)
O11 0.71137 (9) 0.42553 (19) 0.45234 (7) 0.0271 (2)
O12 0.58622 (10) 0.15605 (19) 0.45752 (8) 0.0312 (3)
N1 0.65255 (10) 0.3330 (2) 0.49290 (9) 0.0204 (2)
C1 0.73727 (13) 0.7493 (3) 0.71720 (11) 0.0256 (3)
H1 0.7829 0.8934 0.7453 0.031*
C2 0.67575 (14) 0.6385 (3) 0.76600 (11) 0.0298 (3)
H2 0.6802 0.7065 0.8276 0.036*
C3 0.60801 (13) 0.4300 (3) 0.72587 (11) 0.0290 (3)
H3 0.5672 0.354 0.7604 0.035*
C4 0.59970 (12) 0.3319 (3) 0.63530 (11) 0.0238 (3)
H4 0.5518 0.1908 0.6063 0.029*
C5 0.66235 (12) 0.4428 (2) 0.58775 (10) 0.0186 (3)
C6 0.73266 (11) 0.6514 (2) 0.62775 (10) 0.0188 (3)
C7 0.94884 (12) 0.6136 (3) 0.62770 (11) 0.0231 (3)
H7A 0.9786 0.6027 0.703 0.028*
H7B 0.926 0.4484 0.5982 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0267 (2) 0.0429 (3) 0.0519 (3) −0.00401 (16) 0.02018 (18) 0.00852 (19)
S1 0.02044 (17) 0.01600 (17) 0.02053 (17) −0.00089 (12) 0.00517 (13) 0.00213 (13)
O1 0.0302 (5) 0.0156 (5) 0.0326 (5) −0.0035 (4) 0.0074 (5) −0.0018 (4)
O11 0.0317 (5) 0.0286 (6) 0.0247 (5) −0.0052 (4) 0.0161 (4) −0.0025 (4)
O12 0.0313 (6) 0.0277 (6) 0.0311 (6) −0.0120 (4) 0.0109 (5) −0.0111 (5)
N1 0.0192 (5) 0.0183 (6) 0.0205 (5) 0.0001 (4) 0.0061 (5) −0.0008 (4)
C1 0.0237 (7) 0.0241 (7) 0.0235 (7) 0.0014 (6) 0.0057 (6) −0.0049 (6)
C2 0.0300 (8) 0.0382 (9) 0.0207 (7) 0.0071 (6) 0.0110 (6) −0.0023 (6)
C3 0.0263 (7) 0.0370 (9) 0.0270 (7) 0.0044 (6) 0.0148 (6) 0.0079 (7)
C4 0.0210 (7) 0.0228 (7) 0.0271 (7) 0.0004 (5) 0.0103 (6) 0.0032 (6)
C5 0.0171 (6) 0.0184 (6) 0.0178 (6) 0.0033 (5) 0.0054 (5) 0.0006 (5)
C6 0.0177 (6) 0.0171 (6) 0.0192 (6) 0.0033 (5) 0.0061 (5) 0.0022 (5)
C7 0.0191 (6) 0.0206 (6) 0.0279 (7) 0.0001 (5) 0.0091 (5) 0.0043 (6)

Geometric parameters (Å, º)

Cl1—C7 1.7703 (14) C2—C3 1.382 (2)
S1—O1 1.4908 (10) C2—H2 0.95
S1—C6 1.8196 (14) C3—C4 1.385 (2)
S1—C7 1.8236 (14) C3—H3 0.95
O11—N1 1.2276 (15) C4—C5 1.3837 (19)
O12—N1 1.2234 (15) C4—H4 0.95
N1—C5 1.4618 (17) C5—C6 1.3953 (18)
C1—C2 1.386 (2) C7—H7A 0.99
C1—C6 1.3865 (19) C7—H7B 0.99
C1—H1 0.95
O1—S1—C6 104.99 (6) C5—C4—C3 118.91 (13)
O1—S1—C7 105.15 (6) C5—C4—H4 120.5
C6—S1—C7 93.53 (6) C3—C4—H4 120.5
O12—N1—O11 123.31 (12) C4—C5—C6 122.02 (12)
O12—N1—C5 118.97 (11) C4—C5—N1 117.44 (12)
O11—N1—C5 117.72 (11) C6—C5—N1 120.53 (12)
C2—C1—C6 120.49 (14) C1—C6—C5 117.97 (13)
C2—C1—H1 119.8 C1—C6—S1 115.84 (11)
C6—C1—H1 119.8 C5—C6—S1 126.16 (10)
C3—C2—C1 120.60 (13) Cl1—C7—S1 107.62 (7)
C3—C2—H2 119.7 Cl1—C7—H7A 110.2
C1—C2—H2 119.7 S1—C7—H7A 110.2
C2—C3—C4 119.97 (13) Cl1—C7—H7B 110.2
C2—C3—H3 120 S1—C7—H7B 110.2
C4—C3—H3 120 H7A—C7—H7B 108.5
C6—C1—C2—C3 −0.6 (2) C4—C5—C6—C1 −0.9 (2)
C1—C2—C3—C4 −0.9 (2) N1—C5—C6—C1 179.16 (12)
C2—C3—C4—C5 1.5 (2) C4—C5—C6—S1 −179.03 (10)
C3—C4—C5—C6 −0.6 (2) N1—C5—C6—S1 1.02 (18)
C3—C4—C5—N1 179.38 (12) O1—S1—C6—C1 −8.09 (12)
O12—N1—C5—C4 3.01 (18) C7—S1—C6—C1 98.62 (11)
O11—N1—C5—C4 −177.48 (12) O1—S1—C6—C5 170.09 (11)
O12—N1—C5—C6 −177.04 (12) C7—S1—C6—C5 −83.20 (12)
O11—N1—C5—C6 2.47 (18) O1—S1—C7—Cl1 −67.86 (9)
C2—C1—C6—C5 1.4 (2) C6—S1—C7—Cl1 −174.44 (8)
C2—C1—C6—S1 179.78 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O12i 0.95 2.44 3.384 (2) 173
C7—H7A···O1ii 0.99 2.36 3.2478 (18) 149
C7—H7B···O1iii 0.99 2.50 3.332 (2) 142

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, y−1/2, −z+3/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6974).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Huang, J.-Y., Li, S.-J. & Wang, Y.-G. (2010). J. Carbohydr. Chem. 29, 142–153.
  7. Kobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035–3045. [DOI] [PubMed]
  8. Melzig, L., Rauhut, C. B. & Knochel, P. (2009). Chem. Commun. pp. 3536–3538. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Yan, Z. (2010). Acta Cryst. E66, o3311. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812043553/hb6974sup1.cif

e-68-o3207-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043553/hb6974Isup2.hkl

e-68-o3207-Isup2.hkl (104.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043553/hb6974Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES