Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 27;68(Pt 11):o3216–o3217. doi: 10.1107/S160053681204370X

3,5-Bis(4-fluoro­phen­yl)-1-(4-nitro­phen­yl)-4,5-dihydro-1H-pyrazole

Seranthimata Samshuddin a, Badiadka Narayana a, Hemmige S Yathirajan b, Thomas Gerber c, Eric Hosten c, Richard Betz c,*
PMCID: PMC3515302  PMID: 23284522

Abstract

In the title compound, C21H15F2N3O2, a pyrazole derivative bearing three aromatic substituents, the central five-membered heterocyclic ring makes dihedral angles of 1.77 (14), 3.68 (13) and 72.15 (14)° with the three benzene rings. In the crystal, C—H⋯O and C—H⋯F inter­actions connect the mol­ecules into double layers parallel to the bc plane.

Related literature  

For general information about the pharmacological properties and medical applications of pyrazole derivatives, see: Kumar et al. (2009); Sarojini et al. (2010); Samshuddin et al. (2012). For the crystal structures of other pyrazole derivatives, see: Baktır et al. (2011); Jasinski et al. (2012). For the puckering analysis of cyclic motifs, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-68-o3216-scheme1.jpg

Experimental  

Crystal data  

  • C21H15F2N3O2

  • M r = 379.36

  • Monoclinic, Inline graphic

  • a = 13.2884 (13) Å

  • b = 12.7364 (10) Å

  • c = 11.4656 (9) Å

  • β = 115.324 (3)°

  • V = 1754.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.57 × 0.33 × 0.27 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.692, T max = 0.971

  • 15973 measured reflections

  • 4301 independent reflections

  • 3066 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.221

  • S = 1.06

  • 4301 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204370X/is5210sup1.cif

e-68-o3216-sup1.cif (25.6KB, cif)

Supplementary material file. DOI: 10.1107/S160053681204370X/is5210Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204370X/is5210Isup3.hkl

e-68-o3216-Isup3.hkl (210.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204370X/is5210Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.41 3.305 (3) 157
C16—H16⋯F2ii 0.95 2.55 3.427 (3) 154
C26—H26⋯F1iii 0.95 2.56 3.494 (3) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

supplementary crystallographic information

Comment

Pyrazole derivatives are well known for their broad spectrum of pharmacological properties and have been found – among others – to exhibit antimicrobial, antioxidant, antiamoebic, anti-inflammatory, analgesic, antidepressant and anticancer activity (Kumar et al., 2009; Sarojini et al., 2010; Samshuddin et al., 2012). Because of these various interesting fields of application as well as their fairly assessable path of synthesis, the pyrazoline ring became a center of attraction for organic chemists. The crystal structures of some pyrazolines derived from 4,4'-difluoro chalcone have been reported (Baktır et al., 2011; Jasinski et al., 2012). Fuelled by our ongoing interest in pharmacological active compounds, the title compound was synthesized.

Three phenyl-derived substituents are bonded to a central 4,5-dihydro-1H-pyrazole moiety. The least-squares planes defined by the C11–C16, C31–C36 and C21–C26 benzene rings enclose dihedral angles of 1.77 (14), 3.68 (13) and 72.15 (14)°, respectively, with the least-squares plane defined by the intracyclic atoms of the central five-membered heterocycle with the largest angle formed by one of the two para-fluoro phenyl groups. A conformational analysis of the 4,5-dihydro-1H-pyrazole moiety is precluded due to its low puckering amplitude (Cremer & Pople, 1975). The nitro group is slightly tilted out of plane of the least-square plane defined by the carbon atoms of the aromatic moiety it is bonded to, the corresponding O2—N3—C34—C35 torsion angle being 17.0 (3)° (Fig. 1).

In the crystal, C—H···O and C—H···F contacts can be observed whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them. These are exclusively supported by hydrogen atoms bonded to para-fluoro phenyl groups. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C—H···O contacts is C(12) on the unary level, while the C—H···F contacts necessitate a C(11)C(11) descriptor on the same level. In total, the molecules are connected to double layers parallel to the bc plane. The shortest intercentroid distance between two aromatic systems was measured at 4.8923 (17) Å and is observed between the two different fluorinated phenyl groups in neighbouring molecules. Taking into account the centroid of the 4,5-dihydro-1H-pyrazole moiety as well, the shortest intercentroid distance is found at 3.5918 (15) Å between this pyrazole unit and the nitrated phenyl group (Fig. 2). The packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

A mixture of 4,4'-difluoro chalcone (2.68 g, 0.01 mol) and 4-nitrophenyl hydrazine (1.53 g, 0.01 mol) was refluxed in glacial acetic acid (50 ml) for 6 h. The reaction mixture was cooled and pourred into ice-cold water (50 ml). The precipitate was collected by filtration and purified by recrystallization from ethanol (yield: 74%). Yellow blocks, suitable for the X-ray diffraction study, were grown from a DMF solution by slow evaporation at room temperature.

Refinement

H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for the methylene group and C—H 1.00 Å for the methine group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [-1 0 0]. For clarity, only an arbitrary selection of intermolecular contacts is shown. [Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) x, -y - 1/2, z - 1/2].

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C21H15F2N3O2 F(000) = 784
Mr = 379.36 Dx = 1.437 Mg m3
Monoclinic, P21/c Melting point: 443 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 13.2884 (13) Å Cell parameters from 6702 reflections
b = 12.7364 (10) Å θ = 2.3–27.9°
c = 11.4656 (9) Å µ = 0.11 mm1
β = 115.324 (3)° T = 200 K
V = 1754.0 (3) Å3 Block, orange
Z = 4 0.57 × 0.33 × 0.27 mm

Data collection

Bruker APEXII CCD diffractometer 4301 independent reflections
Radiation source: fine-focus sealed tube 3066 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
φ and ω scans θmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −17→17
Tmin = 0.692, Tmax = 0.971 k = −15→16
15973 measured reflections l = −15→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1331P)2 + 0.5062P] where P = (Fo2 + 2Fc2)/3
4301 reflections (Δ/σ)max < 0.001
253 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.39 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.11689 (15) −0.42461 (13) −0.04507 (17) 0.0638 (5)
F2 0.01460 (13) 0.43563 (13) 0.35591 (18) 0.0611 (5)
O1 0.61528 (16) 0.02802 (17) 1.00769 (16) 0.0536 (5)
O2 0.57223 (18) 0.19339 (18) 0.98021 (18) 0.0663 (6)
N1 0.30617 (15) −0.05788 (13) 0.36124 (16) 0.0305 (4)
N2 0.32892 (15) 0.04326 (14) 0.40815 (16) 0.0327 (4)
N3 0.56940 (16) 0.10368 (18) 0.93869 (18) 0.0428 (5)
C1 0.25491 (17) −0.05414 (16) 0.23711 (18) 0.0297 (4)
C2 0.2351 (2) 0.05569 (17) 0.1837 (2) 0.0368 (5)
H2A 0.1545 0.0717 0.1396 0.044*
H2B 0.2688 0.0663 0.1225 0.044*
C3 0.29364 (18) 0.12390 (17) 0.30617 (19) 0.0322 (5)
H3 0.3607 0.1583 0.3047 0.039*
C11 0.21963 (17) −0.15094 (17) 0.16168 (18) 0.0298 (4)
C12 0.24429 (19) −0.24829 (18) 0.2240 (2) 0.0354 (5)
H12 0.2849 −0.2511 0.3151 0.042*
C13 0.2103 (2) −0.34014 (19) 0.1545 (3) 0.0426 (5)
H13 0.2270 −0.4063 0.1968 0.051*
C14 0.1515 (2) −0.3339 (2) 0.0222 (2) 0.0431 (6)
C15 0.1269 (2) −0.2404 (2) −0.0425 (2) 0.0437 (6)
H15 0.0871 −0.2385 −0.1338 0.052*
C16 0.16125 (19) −0.14838 (19) 0.0279 (2) 0.0375 (5)
H16 0.1448 −0.0827 −0.0156 0.045*
C21 0.21828 (17) 0.20653 (17) 0.32160 (18) 0.0303 (4)
C22 0.2177 (2) 0.30641 (19) 0.2750 (3) 0.0495 (6)
H22 0.2653 0.3225 0.2350 0.059*
C23 0.1486 (3) 0.3840 (2) 0.2857 (3) 0.0570 (7)
H23 0.1479 0.4525 0.2528 0.068*
C24 0.08164 (19) 0.35925 (19) 0.3447 (3) 0.0422 (6)
C25 0.0790 (2) 0.2616 (2) 0.3912 (2) 0.0431 (6)
H25 0.0308 0.2464 0.4309 0.052*
C26 0.14779 (19) 0.18489 (19) 0.3796 (2) 0.0390 (5)
H26 0.1468 0.1163 0.4117 0.047*
C31 0.39135 (16) 0.05788 (16) 0.53770 (18) 0.0289 (4)
C32 0.42036 (18) −0.02827 (17) 0.62266 (19) 0.0321 (4)
H32 0.3995 −0.0972 0.5896 0.039*
C33 0.47889 (18) −0.01300 (18) 0.7534 (2) 0.0344 (5)
H33 0.4983 −0.0711 0.8108 0.041*
C34 0.50939 (17) 0.08796 (18) 0.80077 (19) 0.0331 (5)
C35 0.48391 (18) 0.17349 (18) 0.7191 (2) 0.0348 (5)
H35 0.5063 0.2419 0.7534 0.042*
C36 0.42597 (18) 0.15954 (18) 0.5877 (2) 0.0346 (5)
H36 0.4095 0.2181 0.5311 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0698 (11) 0.0542 (10) 0.0696 (11) −0.0138 (8) 0.0319 (9) −0.0309 (8)
F2 0.0490 (9) 0.0516 (10) 0.0853 (12) 0.0049 (7) 0.0312 (9) −0.0195 (8)
O1 0.0509 (10) 0.0741 (14) 0.0274 (8) 0.0024 (9) 0.0089 (7) −0.0019 (8)
O2 0.0681 (13) 0.0731 (14) 0.0428 (10) 0.0056 (11) 0.0096 (9) −0.0301 (10)
N1 0.0346 (9) 0.0314 (9) 0.0248 (8) 0.0006 (7) 0.0119 (7) −0.0021 (7)
N2 0.0425 (10) 0.0293 (9) 0.0234 (8) 0.0018 (7) 0.0113 (7) 0.0009 (7)
N3 0.0354 (10) 0.0617 (14) 0.0292 (9) −0.0014 (9) 0.0117 (8) −0.0124 (9)
C1 0.0316 (10) 0.0352 (11) 0.0239 (9) 0.0015 (8) 0.0133 (8) −0.0014 (8)
C2 0.0474 (13) 0.0379 (12) 0.0248 (9) 0.0063 (10) 0.0151 (9) 0.0025 (8)
C3 0.0356 (11) 0.0350 (11) 0.0267 (9) 0.0027 (8) 0.0139 (8) 0.0035 (8)
C11 0.0301 (10) 0.0366 (11) 0.0233 (9) 0.0008 (8) 0.0121 (8) −0.0025 (8)
C12 0.0364 (11) 0.0373 (11) 0.0308 (10) 0.0015 (9) 0.0127 (9) 0.0014 (9)
C13 0.0449 (13) 0.0362 (12) 0.0505 (14) 0.0009 (10) 0.0240 (11) −0.0002 (10)
C14 0.0418 (13) 0.0435 (13) 0.0490 (13) −0.0072 (10) 0.0243 (11) −0.0179 (11)
C15 0.0465 (14) 0.0559 (15) 0.0288 (10) −0.0052 (11) 0.0162 (10) −0.0114 (10)
C16 0.0428 (12) 0.0456 (13) 0.0233 (9) 0.0011 (10) 0.0132 (9) −0.0011 (9)
C21 0.0319 (10) 0.0334 (11) 0.0261 (9) −0.0009 (8) 0.0128 (8) −0.0010 (8)
C22 0.0518 (15) 0.0375 (13) 0.0737 (18) 0.0024 (11) 0.0408 (14) 0.0105 (12)
C23 0.0619 (17) 0.0300 (13) 0.091 (2) 0.0033 (12) 0.0439 (16) 0.0080 (13)
C24 0.0311 (11) 0.0396 (13) 0.0511 (14) 0.0004 (9) 0.0132 (10) −0.0151 (10)
C25 0.0375 (12) 0.0548 (15) 0.0420 (12) 0.0000 (10) 0.0217 (10) −0.0030 (11)
C26 0.0415 (12) 0.0412 (12) 0.0392 (11) −0.0023 (10) 0.0221 (10) 0.0042 (9)
C31 0.0287 (10) 0.0344 (11) 0.0251 (9) 0.0009 (8) 0.0128 (8) −0.0020 (8)
C32 0.0363 (11) 0.0330 (11) 0.0255 (9) −0.0020 (8) 0.0118 (8) −0.0023 (8)
C33 0.0369 (11) 0.0404 (12) 0.0256 (9) −0.0004 (9) 0.0132 (8) 0.0004 (8)
C34 0.0273 (10) 0.0460 (12) 0.0244 (9) 0.0007 (9) 0.0094 (8) −0.0073 (9)
C35 0.0317 (11) 0.0355 (11) 0.0376 (11) −0.0023 (9) 0.0151 (9) −0.0097 (9)
C36 0.0332 (11) 0.0354 (11) 0.0355 (11) −0.0003 (9) 0.0150 (9) −0.0007 (9)

Geometric parameters (Å, º)

F1—C14 1.356 (3) C15—C16 1.385 (3)
F2—C24 1.362 (3) C15—H15 0.9500
O1—N3 1.230 (3) C16—H16 0.9500
O2—N3 1.232 (3) C21—C22 1.378 (3)
N1—C1 1.289 (2) C21—C26 1.388 (3)
N1—N2 1.379 (2) C22—C23 1.389 (4)
N2—C31 1.369 (2) C22—H22 0.9500
N2—C3 1.474 (3) C23—C24 1.364 (4)
N3—C34 1.448 (3) C23—H23 0.9500
C1—C11 1.463 (3) C24—C25 1.360 (4)
C1—C2 1.504 (3) C25—C26 1.383 (3)
C2—C3 1.548 (3) C25—H25 0.9500
C2—H2A 0.9900 C26—H26 0.9500
C2—H2B 0.9900 C31—C32 1.407 (3)
C3—C21 1.514 (3) C31—C36 1.411 (3)
C3—H3 1.0000 C32—C33 1.376 (3)
C11—C16 1.392 (3) C32—H32 0.9500
C11—C12 1.398 (3) C33—C34 1.387 (3)
C12—C13 1.378 (3) C33—H33 0.9500
C12—H12 0.9500 C34—C35 1.381 (3)
C13—C14 1.380 (4) C35—C36 1.379 (3)
C13—H13 0.9500 C35—H35 0.9500
C14—C15 1.367 (4) C36—H36 0.9500
C1—N1—N2 108.68 (16) C15—C16—H16 119.6
C31—N2—N1 118.70 (16) C11—C16—H16 119.6
C31—N2—C3 127.24 (18) C22—C21—C26 118.4 (2)
N1—N2—C3 113.53 (16) C22—C21—C3 119.40 (18)
O1—N3—O2 123.6 (2) C26—C21—C3 122.22 (19)
O1—N3—C34 118.9 (2) C21—C22—C23 121.1 (2)
O2—N3—C34 117.5 (2) C21—C22—H22 119.4
N1—C1—C11 120.38 (18) C23—C22—H22 119.4
N1—C1—C2 113.68 (18) C24—C23—C22 118.4 (2)
C11—C1—C2 125.93 (17) C24—C23—H23 120.8
C1—C2—C3 102.70 (16) C22—C23—H23 120.8
C1—C2—H2A 111.2 C25—C24—F2 119.2 (2)
C3—C2—H2A 111.2 C25—C24—C23 122.5 (2)
C1—C2—H2B 111.2 F2—C24—C23 118.3 (2)
C3—C2—H2B 111.2 C24—C25—C26 118.6 (2)
H2A—C2—H2B 109.1 C24—C25—H25 120.7
N2—C3—C21 113.17 (16) C26—C25—H25 120.7
N2—C3—C2 101.21 (16) C25—C26—C21 121.0 (2)
C21—C3—C2 113.27 (18) C25—C26—H26 119.5
N2—C3—H3 109.6 C21—C26—H26 119.5
C21—C3—H3 109.6 N2—C31—C32 120.28 (18)
C2—C3—H3 109.6 N2—C31—C36 120.42 (19)
C16—C11—C12 118.82 (19) C32—C31—C36 119.30 (19)
C16—C11—C1 121.22 (19) C33—C32—C31 120.3 (2)
C12—C11—C1 119.97 (18) C33—C32—H32 119.9
C13—C12—C11 120.7 (2) C31—C32—H32 119.9
C13—C12—H12 119.7 C32—C33—C34 119.5 (2)
C11—C12—H12 119.7 C32—C33—H33 120.3
C12—C13—C14 118.5 (2) C34—C33—H33 120.3
C12—C13—H13 120.7 C35—C34—C33 121.33 (19)
C14—C13—H13 120.7 C35—C34—N3 119.5 (2)
F1—C14—C15 119.3 (2) C33—C34—N3 119.2 (2)
F1—C14—C13 118.1 (2) C36—C35—C34 120.0 (2)
C15—C14—C13 122.6 (2) C36—C35—H35 120.0
C14—C15—C16 118.6 (2) C34—C35—H35 120.0
C14—C15—H15 120.7 C35—C36—C31 119.6 (2)
C16—C15—H15 120.7 C35—C36—H36 120.2
C15—C16—C11 120.8 (2) C31—C36—H36 120.2
C1—N1—N2—C31 −174.73 (17) C2—C3—C21—C26 85.0 (2)
C1—N1—N2—C3 −2.4 (2) C26—C21—C22—C23 0.1 (4)
N2—N1—C1—C11 −179.48 (17) C3—C21—C22—C23 179.1 (3)
N2—N1—C1—C2 −0.7 (2) C21—C22—C23—C24 0.6 (5)
N1—C1—C2—C3 3.2 (2) C22—C23—C24—C25 −1.0 (4)
C11—C1—C2—C3 −178.07 (19) C22—C23—C24—F2 179.5 (3)
C31—N2—C3—C21 −62.7 (3) F2—C24—C25—C26 −179.8 (2)
N1—N2—C3—C21 125.73 (19) C23—C24—C25—C26 0.8 (4)
C31—N2—C3—C2 175.7 (2) C24—C25—C26—C21 0.0 (4)
N1—N2—C3—C2 4.2 (2) C22—C21—C26—C25 −0.4 (3)
C1—C2—C3—N2 −4.1 (2) C3—C21—C26—C25 −179.3 (2)
C1—C2—C3—C21 −125.55 (18) N1—N2—C31—C32 −7.3 (3)
N1—C1—C11—C16 178.05 (19) C3—N2—C31—C32 −178.48 (19)
C2—C1—C11—C16 −0.6 (3) N1—N2—C31—C36 173.54 (18)
N1—C1—C11—C12 −1.8 (3) C3—N2—C31—C36 2.4 (3)
C2—C1—C11—C12 179.6 (2) N2—C31—C32—C33 −177.13 (19)
C16—C11—C12—C13 −0.8 (3) C36—C31—C32—C33 2.0 (3)
C1—C11—C12—C13 179.1 (2) C31—C32—C33—C34 −0.2 (3)
C11—C12—C13—C14 0.0 (3) C32—C33—C34—C35 −1.2 (3)
C12—C13—C14—F1 −179.0 (2) C32—C33—C34—N3 178.99 (18)
C12—C13—C14—C15 0.8 (4) O1—N3—C34—C35 −162.4 (2)
F1—C14—C15—C16 178.9 (2) O2—N3—C34—C35 17.0 (3)
C13—C14—C15—C16 −0.9 (4) O1—N3—C34—C33 17.4 (3)
C14—C15—C16—C11 0.1 (3) O2—N3—C34—C33 −163.2 (2)
C12—C11—C16—C15 0.7 (3) C33—C34—C35—C36 0.7 (3)
C1—C11—C16—C15 −179.1 (2) N3—C34—C35—C36 −179.45 (18)
N2—C3—C21—C22 151.6 (2) C34—C35—C36—C31 1.1 (3)
C2—C3—C21—C22 −94.0 (3) N2—C31—C36—C35 176.68 (18)
N2—C3—C21—C26 −29.5 (3) C32—C31—C36—C35 −2.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O2i 0.95 2.41 3.305 (3) 157
C16—H16···F2ii 0.95 2.55 3.427 (3) 154
C26—H26···F1iii 0.95 2.56 3.494 (3) 169

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, −y+1/2, z−1/2; (iii) x, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5210).

References

  1. Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  4. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Jasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108–1115.
  9. Kumar, S., Bawa, S., Drabu, S., Kumar, R. & Gupta, H. (2009). Recent Pat. Anti-infect. Drug Discov 4, 154–163. [DOI] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012–2022.
  12. Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214–224.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204370X/is5210sup1.cif

e-68-o3216-sup1.cif (25.6KB, cif)

Supplementary material file. DOI: 10.1107/S160053681204370X/is5210Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204370X/is5210Isup3.hkl

e-68-o3216-Isup3.hkl (210.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204370X/is5210Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES