Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 27;68(Pt 11):o3218. doi: 10.1107/S1600536812043723

Ethyl (Z)-3-(4-methyl­anilino)-2-[(4-methyl­phen­yl)carbamo­yl]prop-2-enoate

Arun M Islor a, B Garudachari a, Thomas Gerber b, Eric Hosten b, Richard Betz b,*
PMCID: PMC3515303  PMID: 23284523

Abstract

The title compound, C20H22N2O3, is a secondary amine featuring an amide and an ester functionality in connection with a Michael system. The conformation about the C=C bond is E. Intra­molecular N—H⋯O hydrogen bonds occur. In the crystal, C—H⋯O contacts connect the mol­ecules into chains along the b-axis direction.

Related literature  

For general information about the synthetic and industrial importance of aniline and its derivatives, see: Berry & Royd (1984); Garudachari et al. (2012); Sridharan et al. (2006); Kasthuri et al. (2008). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-68-o3218-scheme1.jpg

Experimental  

Crystal data  

  • C20H22N2O3

  • M r = 338.40

  • Monoclinic, Inline graphic

  • a = 18.8170 (4) Å

  • b = 11.9752 (3) Å

  • c = 15.6043 (4) Å

  • β = 91.470 (1)°

  • V = 3515.07 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.42 × 0.26 × 0.19 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.965, T max = 0.984

  • 16569 measured reflections

  • 4353 independent reflections

  • 3411 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.147

  • S = 1.05

  • 4353 reflections

  • 237 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812043723/zq2185sup1.cif

e-68-o3218-sup1.cif (25.1KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812043723/zq2185Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043723/zq2185Isup3.hkl

e-68-o3218-Isup3.hkl (213.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043723/zq2185Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O1i 0.95 2.68 3.620 (2) 170
C25—H25⋯O2ii 0.95 2.70 3.4685 (19) 139
N1—H1⋯O1 0.97 (2) 1.85 (2) 2.6383 (17) 135.9 (18)
N2—H2⋯O2 0.88 (2) 1.92 (2) 2.6713 (18) 143.0 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear sciences, Government of India, for the Young Scientist award.

supplementary crystallographic information

Comment

The study of aniline derivatives is important due to the presence of amines in natural products and nucleic acids (Berry & Royd, 1984). Aniline compounds find widespread applications in the field of synthetic chemistry such as the synthesis of quinolines and indoles (Garudachari et al., 2012; Sridharan et al., 2006). Aniline derivatives are also widely used in many industries such as in the production of dyes and agrochemicals (Kasthuri et al., 2008). Keeping in mind the importance of aniline derivatives, the title compound was synthesized to study its crystal structure.

The molecule can – simultaneously – be regarded as a secondary amide, an enamine, an ester as well as featuring a Michael system. The C=C bond is (E) configured. The least-squares planes defined by the respective carbon atoms of the phenyl rings intersect at an angle of 49.57 (8) °. The central part of the molecule, including the ethyl group, is essentially planar (r.m.s. of the least-squares plane defined by all the non-hydrogen atoms of the respective part of this molecule = 0.0569 Å) with the oxygen atom of the ethoxy group deviating most from this plane (0.095 (1) Å) (Fig. 1).

In the crystal, intramolecular N–H···O bonds involving all secondary amine groups and double bonded oxygen atoms are observed. In addition, intermolecular C–H···O contacts whose range falls slightly below the sum of van-der-Waals radii of the atoms participating are present. The latter contacts are supported by hydrogen atoms on the phenyl group that is bonded to the amide-type nitrogen atom and exclusively have ketonic oxygen atoms as acceptors. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is S(6)S(6)R22(14)R22(18) on the unary level. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, the molecules are connected to chains along the crystallographic b axis. The shortest intercentroid distance between two aromatic systems was measured at 4.5754 (9) Å and is observed between the two different aromatic moieties in neighbouring molecules (Fig 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

A mixture of diethyl-{[(4-methylphenyl)amino]methylidene}propanedioate (1.0 g, 0.0036 mol) and 4-methylaniline (0.19 g, 0.0018 mol) in dowtherm (10 ml) was stirred at 150 °C for 2 h. The reaction mixture was then cooled to 25 °C and stirred in n-hexane (20 ml) for 10 min. The solid product obtained was filtered, dried and further purified by column chromatography using petrol ether and ethyl acetate (v:v = 5:5) as the eluent to get a white solid. Crystals were grown by slow evaporation of a dilute ethanol solution at room temperature, yield: 0.52 g (42.6%).

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å for aromatic and vinylic carbon atoms, C—H = 0.99 Å for the methylene group, and C—H = 0.98 Å for the methyl groups) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 or 1.5Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density [HFIX 137 in the SHELX program suite (Sheldrick, 2008), with Uiso(H) set to 1.5Ueq(C)]. Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [0 0 - 1]. Intermolecular C–H···O contacts are depicted with green dashed lines, intramolecular N–H···O hydrogen bonds are depicted with blue dashed lines. Symmetry operators: (i) -x + 1/2, -y + 3/2, -z; (ii) -x + 1/2, -y + 1/2, -z.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [0 0 - 1] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C20H22N2O3 F(000) = 1440
Mr = 338.40 Dx = 1.279 Mg m3
Monoclinic, C2/c Melting point = 438–440 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 18.8170 (4) Å Cell parameters from 7492 reflections
b = 11.9752 (3) Å θ = 2.4–28.3°
c = 15.6043 (4) Å µ = 0.09 mm1
β = 91.470 (1)° T = 200 K
V = 3515.07 (15) Å3 Cubic, white
Z = 8 0.42 × 0.26 × 0.19 mm

Data collection

Bruker APEXII CCD diffractometer 4353 independent reflections
Radiation source: fine-focus sealed tube 3411 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
φ and ω scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −18→25
Tmin = 0.965, Tmax = 0.984 k = −15→11
16569 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0721P)2 + 2.7716P] where P = (Fo2 + 2Fc2)/3
4353 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.22 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.10013 (6) 0.36356 (9) 0.05742 (8) 0.0390 (3)
O2 0.06034 (7) 0.70809 (10) 0.07895 (9) 0.0432 (3)
O3 −0.03953 (6) 0.66632 (10) 0.14650 (8) 0.0396 (3)
N1 −0.02327 (7) 0.33906 (11) 0.13174 (9) 0.0328 (3)
N2 0.14011 (7) 0.53822 (11) 0.02606 (9) 0.0311 (3)
C1 −0.25933 (9) 0.06696 (16) 0.22528 (12) 0.0427 (4)
H1A −0.3026 0.0976 0.1980 0.064*
H1B −0.2645 0.0658 0.2876 0.064*
H1C −0.2516 −0.0092 0.2046 0.064*
C2 −0.02178 (8) 0.44917 (13) 0.13478 (10) 0.0312 (3)
H2A −0.0606 0.4854 0.1608 0.037*
C3 0.03155 (8) 0.51666 (13) 0.10328 (9) 0.0297 (3)
C4 0.09288 (8) 0.46684 (13) 0.06104 (9) 0.0302 (3)
C5 0.02073 (8) 0.63730 (14) 0.10765 (10) 0.0326 (3)
C6 −0.05772 (10) 0.78362 (15) 0.14399 (13) 0.0469 (4)
H6A −0.0622 0.8099 0.0839 0.056*
H6B −0.0205 0.8283 0.1741 0.056*
C7 −0.12693 (12) 0.79542 (19) 0.18756 (17) 0.0635 (6)
H7A −0.1402 0.8745 0.1898 0.095*
H7B −0.1224 0.7658 0.2460 0.095*
H7C −0.1637 0.7537 0.1556 0.095*
C8 0.41549 (10) 0.47429 (18) −0.11452 (14) 0.0508 (5)
H8A 0.4139 0.4875 −0.1765 0.076*
H8B 0.4322 0.3981 −0.1029 0.076*
H8C 0.4481 0.5278 −0.0868 0.076*
C11 −0.08114 (8) 0.27242 (13) 0.15835 (10) 0.0309 (3)
C12 −0.09618 (8) 0.17563 (14) 0.11323 (10) 0.0341 (3)
H12 −0.0674 0.1541 0.0669 0.041*
C13 −0.15332 (9) 0.11012 (13) 0.13590 (10) 0.0334 (3)
H13 −0.1632 0.0436 0.1046 0.040*
C14 −0.19666 (8) 0.13884 (13) 0.20320 (10) 0.0318 (3)
C15 −0.18046 (9) 0.23622 (14) 0.24851 (10) 0.0345 (3)
H15 −0.2091 0.2575 0.2951 0.041*
C16 −0.12299 (9) 0.30289 (13) 0.22665 (10) 0.0339 (3)
H16 −0.1125 0.3689 0.2583 0.041*
C21 0.20602 (8) 0.51483 (13) −0.01130 (10) 0.0291 (3)
C22 0.24017 (9) 0.41154 (13) −0.00733 (11) 0.0348 (4)
H22 0.2177 0.3494 0.0184 0.042*
C23 0.30724 (9) 0.40025 (13) −0.04125 (11) 0.0371 (4)
H23 0.3301 0.3296 −0.0382 0.044*
C24 0.34214 (8) 0.48883 (14) −0.07960 (11) 0.0355 (4)
C25 0.30692 (9) 0.59088 (14) −0.08402 (10) 0.0350 (4)
H25 0.3293 0.6528 −0.1102 0.042*
C26 0.23978 (8) 0.60390 (13) −0.05100 (10) 0.0315 (3)
H26 0.2165 0.6741 −0.0554 0.038*
H1 0.0165 (11) 0.3084 (18) 0.1007 (13) 0.051 (6)*
H2 0.1286 (11) 0.6090 (19) 0.0307 (13) 0.046 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0374 (6) 0.0282 (6) 0.0518 (7) −0.0027 (5) 0.0111 (5) 0.0020 (5)
O2 0.0395 (6) 0.0313 (6) 0.0595 (8) −0.0067 (5) 0.0168 (6) 0.0000 (5)
O3 0.0365 (6) 0.0332 (6) 0.0498 (7) −0.0006 (5) 0.0139 (5) 0.0026 (5)
N1 0.0278 (6) 0.0320 (7) 0.0389 (7) −0.0026 (5) 0.0048 (5) 0.0011 (5)
N2 0.0281 (6) 0.0269 (7) 0.0384 (7) −0.0020 (5) 0.0039 (5) 0.0021 (5)
C1 0.0386 (9) 0.0414 (10) 0.0482 (10) −0.0135 (7) 0.0049 (7) 0.0033 (8)
C2 0.0305 (7) 0.0325 (8) 0.0304 (7) −0.0024 (6) −0.0008 (6) 0.0011 (6)
C3 0.0286 (7) 0.0308 (8) 0.0297 (7) −0.0047 (6) −0.0001 (6) 0.0017 (6)
C4 0.0293 (7) 0.0311 (8) 0.0300 (7) −0.0058 (6) −0.0017 (6) 0.0026 (6)
C5 0.0309 (7) 0.0343 (8) 0.0329 (8) −0.0039 (6) 0.0028 (6) 0.0001 (6)
C6 0.0472 (10) 0.0346 (9) 0.0599 (12) 0.0025 (8) 0.0159 (9) 0.0037 (8)
C7 0.0595 (13) 0.0477 (12) 0.0848 (16) 0.0138 (10) 0.0327 (12) 0.0098 (11)
C8 0.0335 (9) 0.0503 (11) 0.0694 (13) −0.0037 (8) 0.0150 (9) −0.0061 (9)
C11 0.0273 (7) 0.0308 (8) 0.0346 (8) −0.0032 (6) 0.0000 (6) 0.0066 (6)
C12 0.0322 (8) 0.0349 (8) 0.0355 (8) −0.0002 (6) 0.0042 (6) 0.0022 (6)
C13 0.0355 (8) 0.0277 (7) 0.0368 (8) −0.0023 (6) −0.0009 (6) 0.0017 (6)
C14 0.0285 (7) 0.0305 (8) 0.0365 (8) −0.0034 (6) −0.0004 (6) 0.0068 (6)
C15 0.0337 (8) 0.0346 (8) 0.0353 (8) −0.0024 (6) 0.0034 (6) 0.0018 (6)
C16 0.0355 (8) 0.0311 (8) 0.0350 (8) −0.0059 (6) −0.0015 (6) −0.0004 (6)
C21 0.0270 (7) 0.0288 (7) 0.0315 (7) −0.0043 (6) 0.0003 (6) 0.0002 (6)
C22 0.0328 (8) 0.0256 (7) 0.0462 (9) −0.0055 (6) 0.0041 (7) 0.0021 (6)
C23 0.0343 (8) 0.0261 (7) 0.0509 (10) −0.0009 (6) 0.0024 (7) −0.0028 (7)
C24 0.0291 (7) 0.0356 (8) 0.0419 (9) −0.0043 (6) 0.0034 (6) −0.0046 (7)
C25 0.0335 (8) 0.0325 (8) 0.0390 (8) −0.0080 (6) 0.0043 (6) 0.0031 (6)
C26 0.0314 (8) 0.0274 (7) 0.0357 (8) −0.0021 (6) −0.0002 (6) 0.0037 (6)

Geometric parameters (Å, º)

O1—C4 1.2458 (19) C8—C24 1.507 (2)
O2—C5 1.2214 (19) C8—H8A 0.9800
O3—C5 1.3451 (19) C8—H8B 0.9800
O3—C6 1.446 (2) C8—H8C 0.9800
N1—C2 1.320 (2) C11—C12 1.382 (2)
N1—C11 1.4207 (19) C11—C16 1.390 (2)
N1—H1 0.97 (2) C12—C13 1.384 (2)
N2—C4 1.3576 (19) C12—H12 0.9500
N2—C21 1.412 (2) C13—C14 1.389 (2)
N2—H2 0.88 (2) C13—H13 0.9500
C1—C14 1.507 (2) C14—C15 1.393 (2)
C1—H1A 0.9800 C15—C16 1.394 (2)
C1—H1B 0.9800 C15—H15 0.9500
C1—H1C 0.9800 C16—H16 0.9500
C2—C3 1.388 (2) C21—C22 1.395 (2)
C2—H2A 0.9500 C21—C26 1.395 (2)
C3—C5 1.461 (2) C22—C23 1.388 (2)
C3—C4 1.470 (2) C22—H22 0.9500
C6—C7 1.491 (3) C23—C24 1.391 (2)
C6—H6A 0.9900 C23—H23 0.9500
C6—H6B 0.9900 C24—C25 1.391 (2)
C7—H7A 0.9800 C25—C26 1.385 (2)
C7—H7B 0.9800 C25—H25 0.9500
C7—H7C 0.9800 C26—H26 0.9500
C5—O3—C6 116.13 (13) C24—C8—H8C 109.5
C2—N1—C11 124.50 (14) H8A—C8—H8C 109.5
C2—N1—H1 112.3 (13) H8B—C8—H8C 109.5
C11—N1—H1 122.6 (13) C12—C11—C16 119.89 (14)
C4—N2—C21 129.21 (14) C12—C11—N1 118.09 (14)
C4—N2—H2 114.2 (14) C16—C11—N1 122.02 (14)
C21—N2—H2 116.5 (13) C11—C12—C13 119.70 (15)
C14—C1—H1A 109.5 C11—C12—H12 120.1
C14—C1—H1B 109.5 C13—C12—H12 120.1
H1A—C1—H1B 109.5 C12—C13—C14 121.85 (15)
C14—C1—H1C 109.5 C12—C13—H13 119.1
H1A—C1—H1C 109.5 C14—C13—H13 119.1
H1B—C1—H1C 109.5 C13—C14—C15 117.76 (14)
N1—C2—C3 125.72 (15) C13—C14—C1 120.62 (15)
N1—C2—H2A 117.1 C15—C14—C1 121.62 (15)
C3—C2—H2A 117.1 C14—C15—C16 121.08 (15)
C2—C3—C5 117.15 (14) C14—C15—H15 119.5
C2—C3—C4 120.36 (14) C16—C15—H15 119.5
C5—C3—C4 122.29 (13) C11—C16—C15 119.72 (15)
O1—C4—N2 122.23 (14) C11—C16—H16 120.1
O1—C4—C3 120.75 (13) C15—C16—H16 120.1
N2—C4—C3 117.02 (14) C22—C21—C26 118.90 (14)
O2—C5—O3 121.02 (15) C22—C21—N2 124.49 (14)
O2—C5—C3 125.61 (15) C26—C21—N2 116.53 (14)
O3—C5—C3 113.37 (13) C23—C22—C21 119.48 (14)
O3—C6—C7 106.77 (15) C23—C22—H22 120.3
O3—C6—H6A 110.4 C21—C22—H22 120.3
C7—C6—H6A 110.4 C22—C23—C24 122.27 (15)
O3—C6—H6B 110.4 C22—C23—H23 118.9
C7—C6—H6B 110.4 C24—C23—H23 118.9
H6A—C6—H6B 108.6 C23—C24—C25 117.49 (15)
C6—C7—H7A 109.5 C23—C24—C8 120.95 (16)
C6—C7—H7B 109.5 C25—C24—C8 121.56 (16)
H7A—C7—H7B 109.5 C26—C25—C24 121.22 (15)
C6—C7—H7C 109.5 C26—C25—H25 119.4
H7A—C7—H7C 109.5 C24—C25—H25 119.4
H7B—C7—H7C 109.5 C25—C26—C21 120.62 (15)
C24—C8—H8A 109.5 C25—C26—H26 119.7
C24—C8—H8B 109.5 C21—C26—H26 119.7
H8A—C8—H8B 109.5
C11—N1—C2—C3 −174.78 (14) C11—C12—C13—C14 0.1 (2)
N1—C2—C3—C5 175.86 (15) C12—C13—C14—C15 −0.6 (2)
N1—C2—C3—C4 0.9 (2) C12—C13—C14—C1 178.83 (15)
C21—N2—C4—O1 −6.6 (2) C13—C14—C15—C16 0.4 (2)
C21—N2—C4—C3 173.92 (14) C1—C14—C15—C16 −179.03 (15)
C2—C3—C4—O1 −4.3 (2) C12—C11—C16—C15 −0.8 (2)
C5—C3—C4—O1 −179.08 (14) N1—C11—C16—C15 178.07 (14)
C2—C3—C4—N2 175.10 (14) C14—C15—C16—C11 0.3 (2)
C5—C3—C4—N2 0.4 (2) C4—N2—C21—C22 −10.2 (3)
C6—O3—C5—O2 6.2 (2) C4—N2—C21—C26 172.94 (15)
C6—O3—C5—C3 −172.92 (15) C26—C21—C22—C23 1.3 (2)
C2—C3—C5—O2 −175.98 (15) N2—C21—C22—C23 −175.49 (15)
C4—C3—C5—O2 −1.1 (3) C21—C22—C23—C24 −0.1 (3)
C2—C3—C5—O3 3.1 (2) C22—C23—C24—C25 −0.7 (3)
C4—C3—C5—O3 178.03 (13) C22—C23—C24—C8 178.98 (17)
C5—O3—C6—C7 177.95 (16) C23—C24—C25—C26 0.4 (2)
C2—N1—C11—C12 144.73 (16) C8—C24—C25—C26 −179.34 (16)
C2—N1—C11—C16 −34.1 (2) C24—C25—C26—C21 0.8 (2)
C16—C11—C12—C13 0.6 (2) C22—C21—C26—C25 −1.7 (2)
N1—C11—C12—C13 −178.31 (14) N2—C21—C26—C25 175.37 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C23—H23···O1i 0.95 2.68 3.620 (2) 170
C25—H25···O2ii 0.95 2.70 3.4685 (19) 139
N1—H1···O1 0.97 (2) 1.85 (2) 2.6383 (17) 135.9 (18)
N2—H2···O2 0.88 (2) 1.92 (2) 2.6713 (18) 143.0 (19)

Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2185).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Berry, D. F. & Royd, S. A. (1984). Soil Sci. Soc. Am. J. 48, 565–569.
  3. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  4. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Garudachari, B., Satyanarayana, M. N., Thippeswamy, B., Shivakumar, C. K., Shivananda, K. N., Hegde, G. & Isloor, A. M. (2012). Eur. J. Med. Chem. 54, 900–906. [DOI] [PubMed]
  8. Kasthuri, J., Santhanalakshmi, J. & Rajendiran, N. (2008). J. Iran. Chem. Soc. 3, 436–444.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Sridharan, V., Perumal, S., Avendano, C. & Menendez, J. C. (2006). Synlett, pp. 91–95.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812043723/zq2185sup1.cif

e-68-o3218-sup1.cif (25.1KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812043723/zq2185Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043723/zq2185Isup3.hkl

e-68-o3218-Isup3.hkl (213.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043723/zq2185Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES