Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 27;68(Pt 11):o3231–o3232. doi: 10.1107/S1600536812044030

4-Methyl­phenyl quinoline-2-carboxyl­ate

E Fazal a, Jerry P Jasinski b,*, Shannon T Krauss b, B S Sudha a, H S Yathirajan c
PMCID: PMC3515313  PMID: 23284533

Abstract

In the title compound, C17H13NO2, two mol­ecules crystallize in the asymmetric unit. The dihedral angle between the mean planes of the quinoline and benzene rings are 78.3 (4) and 88.2 (3)°. The carboxyl­ate group is twisted slightly from the quinoline ring by 7.1 (2) and 13.3 (4)°, respectively. In the crystal, weak C—H⋯O inter­actions are observed. Further stabilization is provided by weak π–π stacking inter­actions, with centroid–centroid distances of 3.564 (9)/3.689 (2) and 3.830 (1)/3.896 (5)Å, respectively.

Related literature  

For heterocycles in natural products, see: Morimoto et al. (1991); Michael (1997). For heterocycles in fragrances and dyes, see: Padwa et al. (1999). For heterocycles in biologically active compounds, see: Markees et al. (1970); Campbell et al. (1988). For quinoline alkaloids used as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011). For related structures, see: Dobrzyńska & Jerzykiewicz, (2004); Butcher et al. (2007); Jing & Qin (2008); Jasinski et al. (2010). For bond lengths, see Allen et al. (1987).graphic file with name e-68-o3231-scheme1.jpg

Experimental  

Crystal data  

  • C17H13NO2

  • M r = 263.28

  • Orthorhombic, Inline graphic

  • a = 11.5421 (2) Å

  • b = 17.3191 (3) Å

  • c = 26.6667 (5) Å

  • V = 5330.65 (16) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 173 K

  • 0.22 × 0.14 × 0.12 mm

Data collection  

  • Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.726, T max = 1.000

  • 34626 measured reflections

  • 5265 independent reflections

  • 4303 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.124

  • S = 1.02

  • 5265 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044030/bq2377sup1.cif

e-68-o3231-sup1.cif (34.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044030/bq2377Isup2.hkl

e-68-o3231-Isup2.hkl (244.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044030/bq2377Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15B—H15B⋯O2A i 0.93 2.59 3.343 (2) 138

Symmetry code: (i) Inline graphic.

Acknowledgments

EF thanks Yuvaraja’s college, UOM for providing the research facilities and also to Dr. S. Nagarajan, Senior Scientist at CFTRI for giving valuable suggestions. JPJ acknowledges the NSF–MRI program (grant No·CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Quinoline-2-carboxylic acid derivatives are a class of important materials as anti-tuberculosis agents, as fluorescent reagents, hydrophobic field-detection reagents, visualization reagents, fluorescent labeled peptide probes and as antihyperglycemics. Quinoline derivatives represent a major class of heterocycles and are found in natural products (Morimoto et al., 1991; Michael, 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Quinoline as a privileged scaffold in cancer drug discovery is published (Solomon & Lee, 2011). The crystal structures of quinoline-2-carboxylic acid (Dobrzyńska & Jerzykiewicz, 2004), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and methyl quinoline-2-carboxylate (Jing & Qin, 2008) and the synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have been reported. In view of the importance of quinolines, the paper reports the crystal structure of the title compound, 4-methylphenyl quinoline-2-carboxylate, (I).

In the title compound, C17H13NO2, two molecules (A & B) crystallize in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the quinoline and benzene rings are 78.3 (4)° (A) and 88.2 (3)° (B). The carboxylate group is twisted slightly from the quinoline ring by 7.1 (2)° (A) and 13.3 (4)° B, respectively. Bond lengths are in normal ranges (Allen et al., (1987). In the crystal weak C—H···O intermolecular interactions are observed (Fig. 2). Further stabilization is provided by weak π–π stacking interactions with centroid to centroid distances of 3.564 (9)Å (Cg2-Cg1], 3.689 (2)Å (Cg2-Cg6), 3.830 (1)Å (Cg1-Cg5) and 3.896 (5)Å (Cg1-Cg1) [where Cg1 = N1A/C1A/C6A/C7A/C8A/C9A; Cg2 = C1A–C6A; Cg5 = N1B/C1B/C6B/C7B/C8B/C9B; C6 = C1B–C6B].

Experimental

To a mixture of (1.73 g, 10 mmole) of quinaldic acid and p-cresol (1.08 g, 10 mmole) in a round-bottomed flask fitted with a reflux condenser with a drying tube, 0.75 g (5 mmole) of phosphorous oxychloride was added. The mixture was heated with occasional swirling, and temperature maintained at 348–353 K. At the end of six hours, the reaction mixture was poured into a solution of 2 g of sodium bicarbonate in 25 mL of water. The precipitated ester was filtered and washed with water. The yield of crude, air dried p-tolyl quinoline-2-carboxylate was 1.75 to 1.85 g (65-70%). X-ray quality crystals were obtained by recrystallization from absolute ethanol (m.p.: 396-398 K).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.96Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH) or 1.50 (CH3) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme of two molecules (A & B) in the asymmetric unit and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the a axis. Dashed lines indicate weak C—H···O intermolecular interactions. The remaining H atoms have been removed for clarity.

Crystal data

C17H13NO2 F(000) = 2208
Mr = 263.28 Dx = 1.312 Mg m3
Orthorhombic, Pbca Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2ab Cell parameters from 10490 reflections
a = 11.5421 (2) Å θ = 3.8–72.7°
b = 17.3191 (3) Å µ = 0.70 mm1
c = 26.6667 (5) Å T = 173 K
V = 5330.65 (16) Å3 Chunk, colorless
Z = 16 0.22 × 0.14 × 0.12 mm

Data collection

Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer 5265 independent reflections
Radiation source: Enhance (Cu) X-ray Source 4303 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
Detector resolution: 16.0416 pixels mm-1 θmax = 72.8°, θmin = 4.9°
ω scans h = −14→10
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010) k = −20→21
Tmin = 0.726, Tmax = 1.000 l = −32→31
34626 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0604P)2 + 1.783P] where P = (Fo2 + 2Fc2)/3
5265 reflections (Δ/σ)max = 0.001
363 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.12216 (11) 0.67251 (7) 0.39057 (4) 0.0511 (3)
O2A 0.13223 (13) 0.56857 (9) 0.34041 (5) 0.0657 (4)
N1A −0.03742 (11) 0.60902 (8) 0.44686 (5) 0.0390 (3)
C1A −0.11347 (13) 0.57558 (9) 0.47931 (6) 0.0396 (4)
C2A −0.14961 (14) 0.61816 (10) 0.52172 (6) 0.0450 (4)
H2A −0.1244 0.6688 0.5259 0.054*
C3A −0.22121 (15) 0.58568 (11) 0.55662 (7) 0.0525 (4)
H3A −0.2437 0.6142 0.5845 0.063*
C4A −0.26120 (16) 0.50963 (12) 0.55081 (8) 0.0578 (5)
H4A −0.3097 0.4880 0.5749 0.069*
C5A −0.22915 (15) 0.46757 (11) 0.51017 (8) 0.0569 (5)
H5A −0.2561 0.4172 0.5067 0.068*
C6A −0.15524 (14) 0.49894 (9) 0.47282 (7) 0.0464 (4)
C7A −0.11881 (16) 0.45862 (10) 0.43001 (8) 0.0537 (5)
H7A −0.1462 0.4090 0.4238 0.064*
C8A −0.04317 (17) 0.49246 (10) 0.39768 (7) 0.0526 (5)
H8A −0.0185 0.4664 0.3691 0.063*
C9A −0.00251 (14) 0.56800 (9) 0.40816 (6) 0.0422 (4)
C10A 0.08924 (16) 0.60161 (10) 0.37521 (6) 0.0455 (4)
C11A 0.21459 (15) 0.70870 (10) 0.36529 (6) 0.0447 (4)
C12A 0.32213 (17) 0.70819 (12) 0.38707 (7) 0.0555 (5)
H12A 0.3348 0.6815 0.4168 0.067*
C13A 0.41123 (16) 0.74779 (11) 0.36423 (7) 0.0534 (4)
H13A 0.4842 0.7475 0.3790 0.064*
C14A 0.39551 (15) 0.78789 (10) 0.32009 (6) 0.0452 (4)
C15A 0.28520 (17) 0.78769 (12) 0.29953 (7) 0.0553 (5)
H15A 0.2719 0.8147 0.2699 0.066*
C16A 0.19469 (16) 0.74867 (12) 0.32171 (7) 0.0535 (5)
H16A 0.1212 0.7494 0.3074 0.064*
C17A 0.49506 (18) 0.82914 (13) 0.29514 (7) 0.0600 (5)
H17D 0.5132 0.8040 0.2640 0.090*
H17E 0.5616 0.8278 0.3167 0.090*
H17F 0.4738 0.8818 0.2888 0.090*
O1B 0.66824 (11) 0.35457 (6) 0.36695 (4) 0.0466 (3)
O2B 0.60648 (11) 0.25607 (7) 0.31907 (5) 0.0540 (3)
N1B 0.78323 (10) 0.26045 (7) 0.42615 (4) 0.0322 (3)
C1B 0.85486 (12) 0.21554 (8) 0.45442 (5) 0.0309 (3)
C2B 0.90207 (13) 0.24698 (9) 0.49877 (6) 0.0365 (3)
H2B 0.8820 0.2968 0.5085 0.044*
C3B 0.97676 (14) 0.20498 (9) 0.52742 (6) 0.0396 (3)
H3B 1.0079 0.2265 0.5564 0.048*
C4B 1.00717 (14) 0.12907 (9) 0.51339 (6) 0.0409 (4)
H4B 1.0576 0.1007 0.5334 0.049*
C5B 0.96322 (14) 0.09699 (9) 0.47076 (6) 0.0392 (4)
H5B 0.9842 0.0470 0.4618 0.047*
C6B 0.88617 (13) 0.13903 (8) 0.44012 (5) 0.0330 (3)
C7B 0.83864 (14) 0.11000 (9) 0.39521 (6) 0.0385 (3)
H7B 0.8567 0.0603 0.3846 0.046*
C8B 0.76635 (14) 0.15486 (9) 0.36753 (6) 0.0385 (3)
H8B 0.7338 0.1363 0.3380 0.046*
C9B 0.74165 (12) 0.23042 (8) 0.38463 (5) 0.0332 (3)
C10B 0.66380 (13) 0.27980 (9) 0.35296 (5) 0.0362 (3)
C11B 0.60426 (15) 0.40810 (9) 0.33826 (6) 0.0396 (4)
C12B 0.48842 (16) 0.41864 (10) 0.34708 (6) 0.0481 (4)
H12B 0.4496 0.3877 0.3701 0.058*
C13B 0.42981 (16) 0.47621 (11) 0.32107 (6) 0.0488 (4)
H13B 0.3511 0.4835 0.3269 0.059*
C14B 0.48616 (15) 0.52276 (9) 0.28679 (6) 0.0428 (4)
C15B 0.60316 (15) 0.51005 (10) 0.27840 (6) 0.0428 (4)
H15B 0.6422 0.5403 0.2551 0.051*
C16B 0.66314 (15) 0.45307 (9) 0.30413 (6) 0.0416 (4)
H16B 0.7418 0.4454 0.2984 0.050*
C17B 0.42202 (19) 0.58559 (11) 0.25908 (8) 0.0597 (5)
H17A 0.4712 0.6300 0.2558 0.089*
H17B 0.3536 0.5994 0.2775 0.089*
H17C 0.4005 0.5673 0.2264 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0630 (8) 0.0459 (7) 0.0443 (6) −0.0036 (6) 0.0113 (6) −0.0089 (5)
O2A 0.0815 (10) 0.0666 (9) 0.0489 (7) 0.0005 (8) 0.0093 (7) −0.0219 (6)
N1A 0.0399 (7) 0.0362 (7) 0.0408 (7) 0.0000 (5) −0.0069 (6) −0.0042 (5)
C1A 0.0340 (8) 0.0357 (8) 0.0491 (9) 0.0000 (6) −0.0108 (7) 0.0032 (7)
C2A 0.0400 (9) 0.0456 (9) 0.0493 (9) −0.0030 (7) −0.0047 (7) −0.0009 (7)
C3A 0.0397 (9) 0.0626 (12) 0.0552 (10) 0.0000 (8) −0.0009 (8) 0.0061 (9)
C4A 0.0396 (9) 0.0603 (12) 0.0735 (13) 0.0004 (8) −0.0007 (9) 0.0205 (10)
C5A 0.0391 (9) 0.0409 (9) 0.0908 (15) −0.0038 (7) −0.0120 (9) 0.0193 (10)
C6A 0.0384 (8) 0.0339 (8) 0.0670 (11) 0.0023 (7) −0.0151 (8) 0.0030 (8)
C7A 0.0485 (10) 0.0333 (8) 0.0793 (13) −0.0010 (7) −0.0175 (9) −0.0060 (8)
C8A 0.0572 (11) 0.0427 (9) 0.0580 (11) 0.0080 (8) −0.0130 (9) −0.0156 (8)
C9A 0.0438 (9) 0.0388 (8) 0.0439 (8) 0.0053 (7) −0.0119 (7) −0.0067 (7)
C10A 0.0544 (10) 0.0463 (9) 0.0357 (8) 0.0079 (8) −0.0076 (7) −0.0088 (7)
C11A 0.0535 (10) 0.0437 (9) 0.0368 (8) 0.0051 (8) 0.0066 (7) −0.0038 (7)
C12A 0.0650 (12) 0.0597 (11) 0.0418 (9) 0.0046 (9) −0.0070 (9) 0.0130 (8)
C13A 0.0509 (10) 0.0619 (11) 0.0475 (10) 0.0043 (9) −0.0101 (8) 0.0077 (8)
C14A 0.0526 (10) 0.0464 (9) 0.0366 (8) 0.0057 (8) 0.0002 (7) −0.0019 (7)
C15A 0.0584 (11) 0.0684 (12) 0.0390 (9) 0.0069 (9) −0.0039 (8) 0.0129 (8)
C16A 0.0452 (9) 0.0704 (12) 0.0447 (9) 0.0062 (9) −0.0045 (8) 0.0059 (9)
C17A 0.0640 (12) 0.0682 (13) 0.0477 (10) −0.0078 (10) 0.0010 (9) 0.0003 (9)
O1B 0.0612 (7) 0.0323 (6) 0.0463 (6) 0.0021 (5) −0.0194 (5) −0.0004 (5)
O2B 0.0662 (8) 0.0464 (7) 0.0494 (7) 0.0073 (6) −0.0224 (6) −0.0120 (5)
N1B 0.0362 (6) 0.0270 (6) 0.0333 (6) −0.0016 (5) 0.0012 (5) −0.0006 (5)
C1B 0.0337 (7) 0.0259 (7) 0.0330 (7) −0.0026 (6) 0.0037 (6) 0.0012 (5)
C2B 0.0435 (8) 0.0283 (7) 0.0378 (8) −0.0004 (6) −0.0009 (6) −0.0010 (6)
C3B 0.0460 (9) 0.0366 (8) 0.0363 (8) −0.0016 (7) −0.0036 (7) 0.0017 (6)
C4B 0.0433 (9) 0.0379 (8) 0.0417 (8) 0.0057 (7) −0.0005 (7) 0.0083 (7)
C5B 0.0466 (9) 0.0270 (7) 0.0441 (8) 0.0049 (6) 0.0069 (7) 0.0036 (6)
C6B 0.0371 (8) 0.0267 (7) 0.0351 (7) −0.0019 (6) 0.0083 (6) 0.0007 (5)
C7B 0.0488 (9) 0.0265 (7) 0.0400 (8) 0.0000 (6) 0.0061 (7) −0.0051 (6)
C8B 0.0467 (9) 0.0343 (8) 0.0343 (7) −0.0045 (7) 0.0007 (6) −0.0068 (6)
C9B 0.0346 (7) 0.0318 (7) 0.0332 (7) −0.0036 (6) 0.0020 (6) −0.0009 (6)
C10B 0.0385 (8) 0.0367 (8) 0.0335 (7) −0.0013 (6) 0.0014 (6) −0.0026 (6)
C11B 0.0514 (9) 0.0332 (8) 0.0341 (8) 0.0026 (7) −0.0108 (7) −0.0023 (6)
C12B 0.0519 (10) 0.0484 (10) 0.0440 (9) −0.0026 (8) 0.0000 (8) 0.0086 (7)
C13B 0.0458 (9) 0.0545 (10) 0.0462 (9) 0.0072 (8) −0.0011 (8) 0.0022 (8)
C14B 0.0528 (10) 0.0387 (8) 0.0369 (8) 0.0061 (7) −0.0073 (7) −0.0029 (6)
C15B 0.0533 (10) 0.0414 (9) 0.0337 (8) −0.0005 (7) −0.0022 (7) 0.0030 (6)
C16B 0.0444 (9) 0.0426 (9) 0.0378 (8) 0.0034 (7) −0.0022 (7) −0.0044 (7)
C17B 0.0685 (12) 0.0532 (11) 0.0573 (11) 0.0158 (9) −0.0089 (10) 0.0076 (9)

Geometric parameters (Å, º)

O1A—C10A 1.349 (2) O1B—C10B 1.3486 (18)
O1A—C11A 1.409 (2) O1B—C11B 1.4108 (18)
O2A—C10A 1.198 (2) O2B—C10B 1.1930 (18)
N1A—C9A 1.316 (2) N1B—C9B 1.3139 (18)
N1A—C1A 1.362 (2) N1B—C1B 1.3626 (18)
C1A—C2A 1.413 (2) C1B—C2B 1.412 (2)
C1A—C6A 1.423 (2) C1B—C6B 1.4254 (19)
C2A—C3A 1.366 (2) C2B—C3B 1.362 (2)
C2A—H2A 0.9300 C2B—H2B 0.9300
C3A—C4A 1.404 (3) C3B—C4B 1.411 (2)
C3A—H3A 0.9300 C3B—H3B 0.9300
C4A—C5A 1.357 (3) C4B—C5B 1.363 (2)
C4A—H4A 0.9300 C4B—H4B 0.9300
C5A—C6A 1.419 (3) C5B—C6B 1.410 (2)
C5A—H5A 0.9300 C5B—H5B 0.9300
C6A—C7A 1.403 (3) C6B—C7B 1.410 (2)
C7A—C8A 1.360 (3) C7B—C8B 1.358 (2)
C7A—H7A 0.9300 C7B—H7B 0.9300
C8A—C9A 1.418 (2) C8B—C9B 1.415 (2)
C8A—H8A 0.9300 C8B—H8B 0.9300
C9A—C10A 1.494 (3) C9B—C10B 1.501 (2)
C11A—C12A 1.370 (2) C11B—C12B 1.370 (2)
C11A—C16A 1.372 (2) C11B—C16B 1.377 (2)
C12A—C13A 1.378 (3) C12B—C13B 1.390 (2)
C12A—H12A 0.9300 C12B—H12B 0.9300
C13A—C14A 1.379 (2) C13B—C14B 1.382 (2)
C13A—H13A 0.9300 C13B—H13B 0.9300
C14A—C15A 1.386 (2) C14B—C15B 1.386 (2)
C14A—C17A 1.508 (3) C14B—C17B 1.509 (2)
C15A—C16A 1.378 (3) C15B—C16B 1.387 (2)
C15A—H15A 0.9300 C15B—H15B 0.9300
C16A—H16A 0.9300 C16B—H16B 0.9300
C17A—H17D 0.9600 C17B—H17A 0.9600
C17A—H17E 0.9600 C17B—H17B 0.9600
C17A—H17F 0.9600 C17B—H17C 0.9600
C10A—O1A—C11A 118.21 (13) C10B—O1B—C11B 117.46 (12)
C9A—N1A—C1A 117.78 (14) C9B—N1B—C1B 117.50 (12)
N1A—C1A—C2A 118.48 (14) N1B—C1B—C2B 118.52 (12)
N1A—C1A—C6A 122.53 (16) N1B—C1B—C6B 122.45 (13)
C2A—C1A—C6A 118.96 (16) C2B—C1B—C6B 119.01 (13)
C3A—C2A—C1A 120.60 (17) C3B—C2B—C1B 120.54 (14)
C3A—C2A—H2A 119.7 C3B—C2B—H2B 119.7
C1A—C2A—H2A 119.7 C1B—C2B—H2B 119.7
C2A—C3A—C4A 120.66 (19) C2B—C3B—C4B 120.41 (15)
C2A—C3A—H3A 119.7 C2B—C3B—H3B 119.8
C4A—C3A—H3A 119.7 C4B—C3B—H3B 119.8
C5A—C4A—C3A 120.14 (18) C5B—C4B—C3B 120.54 (15)
C5A—C4A—H4A 119.9 C5B—C4B—H4B 119.7
C3A—C4A—H4A 119.9 C3B—C4B—H4B 119.7
C4A—C5A—C6A 121.24 (17) C4B—C5B—C6B 120.49 (14)
C4A—C5A—H5A 119.4 C4B—C5B—H5B 119.8
C6A—C5A—H5A 119.4 C6B—C5B—H5B 119.8
C7A—C6A—C5A 124.10 (17) C7B—C6B—C5B 123.60 (14)
C7A—C6A—C1A 117.51 (17) C7B—C6B—C1B 117.39 (14)
C5A—C6A—C1A 118.38 (17) C5B—C6B—C1B 119.00 (14)
C8A—C7A—C6A 119.59 (16) C8B—C7B—C6B 119.78 (14)
C8A—C7A—H7A 120.2 C8B—C7B—H7B 120.1
C6A—C7A—H7A 120.2 C6B—C7B—H7B 120.1
C7A—C8A—C9A 119.04 (17) C7B—C8B—C9B 118.53 (14)
C7A—C8A—H8A 120.5 C7B—C8B—H8B 120.7
C9A—C8A—H8A 120.5 C9B—C8B—H8B 120.7
N1A—C9A—C8A 123.46 (17) N1B—C9B—C8B 124.34 (14)
N1A—C9A—C10A 117.90 (14) N1B—C9B—C10B 117.87 (13)
C8A—C9A—C10A 118.56 (15) C8B—C9B—C10B 117.79 (13)
O2A—C10A—O1A 123.60 (18) O2B—C10B—O1B 124.15 (14)
O2A—C10A—C9A 124.28 (17) O2B—C10B—C9B 124.21 (14)
O1A—C10A—C9A 112.06 (14) O1B—C10B—C9B 111.63 (12)
C12A—C11A—C16A 120.93 (17) C12B—C11B—C16B 121.32 (15)
C12A—C11A—O1A 118.69 (15) C12B—C11B—O1B 120.35 (15)
C16A—C11A—O1A 120.19 (16) C16B—C11B—O1B 118.14 (15)
C11A—C12A—C13A 119.03 (16) C11B—C12B—C13B 119.00 (16)
C11A—C12A—H12A 120.5 C11B—C12B—H12B 120.5
C13A—C12A—H12A 120.5 C13B—C12B—H12B 120.5
C12A—C13A—C14A 122.00 (17) C14B—C13B—C12B 121.30 (17)
C12A—C13A—H13A 119.0 C14B—C13B—H13B 119.4
C14A—C13A—H13A 119.0 C12B—C13B—H13B 119.4
C13A—C14A—C15A 117.20 (17) C13B—C14B—C15B 118.22 (15)
C13A—C14A—C17A 121.00 (16) C13B—C14B—C17B 120.91 (17)
C15A—C14A—C17A 121.79 (16) C15B—C14B—C17B 120.87 (16)
C16A—C15A—C14A 121.88 (16) C14B—C15B—C16B 121.28 (16)
C16A—C15A—H15A 119.1 C14B—C15B—H15B 119.4
C14A—C15A—H15A 119.1 C16B—C15B—H15B 119.4
C11A—C16A—C15A 118.95 (17) C11B—C16B—C15B 118.88 (16)
C11A—C16A—H16A 120.5 C11B—C16B—H16B 120.6
C15A—C16A—H16A 120.5 C15B—C16B—H16B 120.6
C14A—C17A—H17D 109.5 C14B—C17B—H17A 109.5
C14A—C17A—H17E 109.5 C14B—C17B—H17B 109.5
H17D—C17A—H17E 109.5 H17A—C17B—H17B 109.5
C14A—C17A—H17F 109.5 C14B—C17B—H17C 109.5
H17D—C17A—H17F 109.5 H17A—C17B—H17C 109.5
H17E—C17A—H17F 109.5 H17B—C17B—H17C 109.5
C9A—N1A—C1A—C2A 178.47 (14) C9B—N1B—C1B—C2B 179.00 (13)
C9A—N1A—C1A—C6A 0.2 (2) C9B—N1B—C1B—C6B 0.8 (2)
N1A—C1A—C2A—C3A −176.71 (15) N1B—C1B—C2B—C3B −178.08 (13)
C6A—C1A—C2A—C3A 1.6 (2) C6B—C1B—C2B—C3B 0.2 (2)
C1A—C2A—C3A—C4A −0.6 (3) C1B—C2B—C3B—C4B −0.6 (2)
C2A—C3A—C4A—C5A −0.2 (3) C2B—C3B—C4B—C5B 0.7 (2)
C3A—C4A—C5A—C6A 0.0 (3) C3B—C4B—C5B—C6B −0.3 (2)
C4A—C5A—C6A—C7A 179.93 (17) C4B—C5B—C6B—C7B 179.09 (15)
C4A—C5A—C6A—C1A 1.1 (3) C4B—C5B—C6B—C1B −0.1 (2)
N1A—C1A—C6A—C7A −2.5 (2) N1B—C1B—C6B—C7B −0.9 (2)
C2A—C1A—C6A—C7A 179.24 (15) C2B—C1B—C6B—C7B −179.09 (13)
N1A—C1A—C6A—C5A 176.45 (14) N1B—C1B—C6B—C5B 178.34 (13)
C2A—C1A—C6A—C5A −1.8 (2) C2B—C1B—C6B—C5B 0.1 (2)
C5A—C6A—C7A—C8A −176.68 (17) C5B—C6B—C7B—C8B −179.01 (14)
C1A—C6A—C7A—C8A 2.2 (2) C1B—C6B—C7B—C8B 0.2 (2)
C6A—C7A—C8A—C9A 0.2 (3) C6B—C7B—C8B—C9B 0.6 (2)
C1A—N1A—C9A—C8A 2.4 (2) C1B—N1B—C9B—C8B 0.0 (2)
C1A—N1A—C9A—C10A −174.34 (13) C1B—N1B—C9B—C10B −179.30 (12)
C7A—C8A—C9A—N1A −2.7 (3) C7B—C8B—C9B—N1B −0.7 (2)
C7A—C8A—C9A—C10A 174.08 (16) C7B—C8B—C9B—C10B 178.62 (14)
C11A—O1A—C10A—O2A −2.1 (3) C11B—O1B—C10B—O2B −2.6 (2)
C11A—O1A—C10A—C9A 175.13 (14) C11B—O1B—C10B—C9B 176.32 (13)
N1A—C9A—C10A—O2A 176.18 (17) N1B—C9B—C10B—O2B −167.71 (15)
C8A—C9A—C10A—O2A −0.7 (3) C8B—C9B—C10B—O2B 12.9 (2)
N1A—C9A—C10A—O1A −1.0 (2) N1B—C9B—C10B—O1B 13.42 (19)
C8A—C9A—C10A—O1A −177.91 (15) C8B—C9B—C10B—O1B −165.96 (13)
C10A—O1A—C11A—C12A −101.26 (19) C10B—O1B—C11B—C12B 82.90 (19)
C10A—O1A—C11A—C16A 83.7 (2) C10B—O1B—C11B—C16B −101.91 (17)
C16A—C11A—C12A—C13A −0.8 (3) C16B—C11B—C12B—C13B −0.3 (3)
O1A—C11A—C12A—C13A −175.76 (16) O1B—C11B—C12B—C13B 174.77 (15)
C11A—C12A—C13A—C14A 0.0 (3) C11B—C12B—C13B—C14B −0.1 (3)
C12A—C13A—C14A—C15A 0.7 (3) C12B—C13B—C14B—C15B 0.8 (3)
C12A—C13A—C14A—C17A −178.47 (18) C12B—C13B—C14B—C17B −179.43 (17)
C13A—C14A—C15A—C16A −0.6 (3) C13B—C14B—C15B—C16B −1.0 (2)
C17A—C14A—C15A—C16A 178.60 (19) C17B—C14B—C15B—C16B 179.21 (16)
C12A—C11A—C16A—C15A 0.9 (3) C12B—C11B—C16B—C15B 0.1 (2)
O1A—C11A—C16A—C15A 175.81 (17) O1B—C11B—C16B—C15B −175.10 (13)
C14A—C15A—C16A—C11A −0.2 (3) C14B—C15B—C16B—C11B 0.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15B—H15B···O2Ai 0.93 2.59 3.343 (2) 138

Symmetry code: (i) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2377).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2000). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.
  4. Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035. [DOI] [PubMed]
  5. Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51–55.
  6. Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172–181.
  7. Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35–36.
  8. Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. [DOI] [PubMed]
  9. Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.
  10. Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  11. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  12. Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607. [DOI] [PubMed]
  13. Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273–279.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Solomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488–1508. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044030/bq2377sup1.cif

e-68-o3231-sup1.cif (34.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044030/bq2377Isup2.hkl

e-68-o3231-Isup2.hkl (244.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044030/bq2377Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES