Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 27;68(Pt 11):o3235–o3236. doi: 10.1107/S1600536812044091

2-Ethyl-3-hy­droxy-1-isopropyl-4-pyridone

Pule P Molokoane a, M Schutte a,*, G Steyl a
PMCID: PMC3515315  PMID: 23284535

Abstract

The title compound, C10H15NO2, crystallized with three mol­ecules in the asymmetric unit. These three mol­ecules are quite similar except for slight differences in the torsion angles of the substituents on the ring. The isopropyl C—C—N—C torsion angles (towards the carbon next to the ethyl bound carbon), for example, are −150.63 (11), −126.77 (13) and −138.76 (11)° for mol­ecules A, B and C, respectively, and the C—C—C—N torsion angles involving the ethyl C atoms are 102.90 (13), 87.81 (14) and 86.47 (13)°. The main difference between the three mol­ecules lies in the way they are arranged in the solid-state structure. All three mol­ecules form dimers that are connected through strong O—H⋯O hydrogen bonds with R 2 2(10) graph-set motifs. The symmetry of the dimers formed does however differ between mol­ecules. Mol­ecules B connect with each other to form inversion dimers. Mol­ecules A and C, on the other hand, form dimers with local twofold symmetry, but the two mol­ecules are crystallographically distinct. The B and C molecules are linked to themselves and to each other via C—H⋯O hydrogen bonds. This results in the formation of a three-dimensional network structure.

Related literature  

For background on this type of ligand system, see: Fassihi et al. (2009); Weinberg (1994); Galanello, 2007); Scott et al. (2008). For similar structures, see: Xiao et al. (1992); Burgess et al. (1993); Hider et al. (1990); Dobbin et al. (1993); Brown et al. (1995).graphic file with name e-68-o3235-scheme1.jpg

Experimental  

Crystal data  

  • C10H15NO2

  • M r = 181.23

  • Orthorhombic, Inline graphic

  • a = 11.7408 (2) Å

  • b = 13.3554 (2) Å

  • c = 37.5523 (8) Å

  • V = 5888.32 (18) Å3

  • Z = 24

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.43 × 0.32 × 0.16 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.968, T max = 0.986

  • 66795 measured reflections

  • 7343 independent reflections

  • 5939 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.111

  • S = 1.01

  • 7343 reflections

  • 373 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044091/zl2508sup1.cif

e-68-o3235-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044091/zl2508Isup2.hkl

e-68-o3235-Isup2.hkl (352.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044091/zl2508Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2A⋯O1C i 0.89 (2) 1.85 (2) 2.6503 (13) 149.9 (17)
O2B—H2B⋯O1B ii 0.882 (19) 1.859 (18) 2.6480 (13) 147.8 (17)
O2C—H2C⋯O1A iii 0.869 (18) 1.796 (18) 2.5868 (12) 150.3 (17)
C5B—H5B⋯O1C ii 0.95 2.43 3.3237 (16) 156
C6C—H6C⋯O2C iv 1.00 2.59 3.4623 (15) 146
C9B—H9B1⋯O1B v 0.99 2.44 3.3548 (16) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The University of the Free State, the Chemistry Department, the NRF and Sasol Ltd and Inkaba yeAfrica are greatly acknowledged for funding.

supplementary crystallographic information

Comment

3-Hydroxypyridinones, which are derivatives of 3-hydroxypyranones, are known to have antimicrobial and antimalarial activity (Fassihi et al., 2009 and Weinberg, 1994). In addition to this, these compounds are non-toxic and they are approved for therapeutic use in some parts of the world (Galanello, 2007). Furthermore these organic compounds are metal ion chelators and they are used to prepare prodrugs with antioxidant characteristics and have brain targeting capabilities. These drugs have been suggested for the treatment of Alzheimer's disease and might possibly be more effective than treatments that just isolate metals (Scott et al., 2008).

As part of an ongoing study, O,O'-donor bidentate ligands are obtained by functionalizing commercially available 3-hydroxy-2-methylpyran-4-one (maltol) and 3-hydroxy-2-ethylpyran-4-one (ethyl maltol) to the respective 3-hydroxy-2-methylpyrid-4-one and 3-hydroxy-2-ethylpyrid-4-one derivatives. The funtionalizations are performed in order to obtain an array of different electronic and steric properties imparted on the respective starting materials in order to study these effects. Coordination to copper(II) and designing a catalyst with a suitable support for oxidation and the kinetic study thereof are part of this study.

2-Ethyl-3-hydroxy-1-isopropylpyridinone crystallized in the orthorhombic Pbca space group with three molecules in the asymmetric unit. The average carbonyl distances (C=O) in the three molecules of 1.265 (4) Å are comparable to those of similar molecules that have been reported in the literature (Dobbin et al., 1993, Xiao et al., 1992, Burgess et al., 1993, Hider et al., 1990). These four structures differ only by the substituents on the N1 and C1 atoms and are reported as combinations of methyl and ethyl groups compared to ethyl (C1) and isopropyl (N1) for this structure. A distance of 1.265 (1) Å by Xiao et al. (1992), 1.275 (5) Å by Burgess et al. (1993), 1.271 (1) Å by Hider et al. (1990) and 1.264 (2) Å by Dobbin et al. (1993) have been reported. The three crystallograophically distinct molecules are quite similar, for instance the carbonyl distances for molecules A, B and C are 1.264 (1) Å, 1.261 (2) Å and 1.269 (1) Å respectively with r.m.s. values of 0.6447 Å (for an overlay of the complete molecule A and B), 0.6257 Å (for an overlay of the complete molecule B and C) and 0.1476 Å (for an overlay of the complete molecule A and C). Illustrated in Figure 3 is an overlay of all three molecules. As can be seen, the molecules are distinct by small variations in their torsion angles, C1—N1—C6—C7 and C10—C9—C1—N1. For molecule A, B and C respectively, C1—N1—C6—C7 and C10—C9—C1—N1 are -150.62 (11) °, -126.77 (13) ° and -138.76 (11) ° for the first and 102.90 (13) °, 87.81(154 ° and 86.47 (13) ° for the latter torsion angle. The main difference between the three molecules lies however in the way they are arranged in the solid state structure. All three molecules are forming dimers that are connected through strong O—H···O hydrogen bonds with graph set motifs of R22(10). The symmetry of the dimers formed does however differ between molecules. Molecules B connect with each other to form dimers with exact crystallographic inversion symmetry. Molecules A and C, on the other hand form dimers with local two fold symmetry, but the two molecules are crystallographically distinct within the crystal lattice. Two weaker C—H···O intramolecular hydrogen interactions are formed between the ethyl carbon (C9) and the hydroxyl oxygen (O2) in molecule B and C. Another intramolecular C—H···O interactions is formed between the aromatic carbon C5B and a neighboring molecule's ketone oxygen (O1C). Finally, an intermolecular hydrogen interaction is observed between ethyl carbon C9B and a ketone oxygen (O1B).

Experimental

2-Ethyl-3-hydroxy-1-isopropyl-4-pyridinone was prepared from the reflux of 2-ethyl-3-hydroxypyran-4-one (ethyl maltol) (5 g, 0,03568 mol) with 6 equivalents of aqueous isopropylamine (12.65 ml, 0,2141 mol, 99%) in 100 ml of water overnight. The mixture turned dark brown. Decolourizing charcoal was added after refluxing and the mixture was left to stand for 30 min. This was then filtered and the dark brown filtrate was evaporated in vacuo to yield a dark brown solid. Crystallization from cold acetone gave pink crystals of 2-ethyl-3-hydroxy-1-isopropyl-4-pyridinone (Yield - 2.5 g, 0.0138 mol, 50%). NMR (300 MHz)13C: 13.3, 18.5, 23.1, 51.5, 111.9, 133.4, 134.3, 145.2, 169.2. NMR (300 MHz) 1H: 1.11(t), 1.38(d), 2.77(q), 4.48(m), 6.18(d), 7.70(d).

Refinement

Aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent) of the parent atom with a C—H distance of 0.93 Å. The methyl and methene H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and Uiso(H) = 1.2Ueq(C) and at a distance of 0.96 Å and 0.97 Å respectively. The methine hydrogen atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.2 Ueq(C) and at a distance of 0.98 Å. Hydroxyl H atoms were placed from the electron density map and refined freely. Uiso(H) = 0.04216Ueq(C) for molecule A, Uiso(H) = 0.03874Ueq(C) for molecule B and Uiso(H) = 0.03682Ueq(C) for molecule C.

Figures

Fig. 1.

Fig. 1.

Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability). Hydrogen atoms were omitted for clarity.

Fig. 2.

Fig. 2.

Hydrogen interactions (O—H···O) of the title compound in the crystal structure. (Molecule A in blue, molecule B in red and molecule C in purple).

Fig. 3.

Fig. 3.

Least square overlay of all the atoms in the three independent molecules (Molecule A in blue, molecule B in red and molecule C in purple).

Crystal data

C10H15NO2 F(000) = 2352
Mr = 181.23 Dx = 1.227 Mg m3Dm = 1.227 Mg m3Dm measured by not measured
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 9920 reflections
a = 11.7408 (2) Å θ = 2.4–28.3°
b = 13.3554 (2) Å µ = 0.09 mm1
c = 37.5523 (8) Å T = 100 K
V = 5888.32 (18) Å3 Cuboid, pink
Z = 24 0.43 × 0.32 × 0.16 mm

Data collection

Bruker APEXII CCD diffractometer 5939 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −15→15
Tmin = 0.968, Tmax = 0.986 k = −17→14
66795 measured reflections l = −50→49
7343 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0549P)2 + 2.2867P] where P = (Fo2 + 2Fc2)/3
7343 reflections (Δ/σ)max = 0.001
373 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.91293 (7) 0.19653 (6) 0.67343 (2) 0.01841 (18)
O2A 0.82821 (8) 0.01809 (6) 0.64712 (3) 0.0239 (2)
N1A 0.59980 (8) 0.18817 (7) 0.62554 (3) 0.0163 (2)
C1A 0.66341 (10) 0.10117 (8) 0.62811 (3) 0.0172 (2)
C2A 0.76777 (10) 0.10457 (8) 0.64456 (3) 0.0169 (2)
C3A 0.81506 (10) 0.19473 (9) 0.65940 (3) 0.0154 (2)
C4A 0.74207 (10) 0.27933 (9) 0.65694 (3) 0.0180 (2)
H4A 0.7658 0.3411 0.667 0.022*
C5A 0.63923 (10) 0.27388 (9) 0.64048 (3) 0.0185 (2)
H5A 0.5932 0.3323 0.6394 0.022*
C6A 0.48310 (10) 0.18759 (9) 0.60952 (3) 0.0199 (3)
H6A 0.4814 0.1348 0.5906 0.024*
C7A 0.45372 (11) 0.28715 (10) 0.59208 (4) 0.0229 (3)
H7A1 0.5154 0.3068 0.5759 0.034*
H7A2 0.4442 0.3385 0.6105 0.034*
H7A3 0.3827 0.2803 0.5786 0.034*
C8A 0.39681 (11) 0.15899 (10) 0.63795 (4) 0.0275 (3)
H8A1 0.4159 0.0929 0.6476 0.041*
H8A2 0.3205 0.157 0.6274 0.041*
H8A3 0.3985 0.2086 0.6572 0.041*
C9A 0.62142 (11) 0.00365 (9) 0.61273 (4) 0.0227 (3)
H9A1 0.5382 0.0083 0.6088 0.027*
H9A2 0.6351 −0.0506 0.6302 0.027*
C10A 0.67925 (13) −0.02331 (11) 0.57770 (4) 0.0336 (3)
H10G 0.6521 −0.0889 0.5696 0.05*
H10H 0.7619 −0.0258 0.5812 0.05*
H10I 0.661 0.0274 0.5597 0.05*
O1B 0.56596 (7) 0.03944 (7) 0.46383 (3) 0.0233 (2)
O2B 0.59291 (8) −0.13800 (7) 0.50044 (3) 0.0222 (2)
N1B 0.84051 (9) −0.14085 (8) 0.44368 (3) 0.0189 (2)
C1B 0.76037 (10) −0.16947 (9) 0.46869 (3) 0.0175 (2)
C2B 0.66930 (10) −0.10833 (9) 0.47560 (3) 0.0165 (2)
C3B 0.65095 (10) −0.01527 (9) 0.45722 (3) 0.0181 (2)
C4B 0.73506 (12) 0.00685 (10) 0.43113 (4) 0.0240 (3)
H4B 0.7278 0.0662 0.4174 0.029*
C5B 0.82553 (11) −0.05457 (10) 0.42527 (4) 0.0233 (3)
H5B 0.88 −0.0364 0.4077 0.028*
C6B 0.94331 (11) −0.20294 (10) 0.43529 (4) 0.0232 (3)
H6B 0.9474 −0.2587 0.453 0.028*
C7B 1.05136 (12) −0.14100 (13) 0.43862 (5) 0.0384 (4)
H7B1 1.0522 −0.107 0.4617 0.058*
H7B2 1.0537 −0.0911 0.4195 0.058*
H7B3 1.1179 −0.185 0.4367 0.058*
C8B 0.93117 (13) −0.24888 (10) 0.39849 (4) 0.0284 (3)
H8B1 0.8596 −0.2864 0.3972 0.043*
H8B2 0.9952 −0.2942 0.394 0.043*
H8B3 0.9309 −0.1956 0.3805 0.043*
C9B 0.77378 (11) −0.26520 (9) 0.48918 (3) 0.0232 (3)
H9B1 0.8115 −0.3158 0.4739 0.028*
H9B2 0.6976 −0.2912 0.4957 0.028*
C10B 0.84408 (13) −0.24934 (12) 0.52279 (4) 0.0330 (3)
H10D 0.848 −0.3121 0.5362 0.05*
H10E 0.8083 −0.1976 0.5375 0.05*
H10F 0.9212 −0.2281 0.5163 0.05*
O1C 0.05201 (7) −0.00440 (6) 0.65172 (2) 0.01955 (19)
O2C 0.08600 (7) 0.12707 (7) 0.70817 (2) 0.02100 (19)
N1C 0.33901 (8) −0.02479 (7) 0.71342 (3) 0.0154 (2)
C1C 0.25752 (10) 0.04654 (8) 0.72127 (3) 0.0152 (2)
C2C 0.16221 (10) 0.05441 (8) 0.70010 (3) 0.0156 (2)
C3C 0.14118 (10) −0.01157 (8) 0.67065 (3) 0.0154 (2)
C4C 0.22771 (10) −0.08416 (9) 0.66494 (3) 0.0174 (2)
H4C 0.2196 −0.1306 0.6459 0.021*
C5C 0.32200 (10) −0.08894 (8) 0.68600 (3) 0.0176 (2)
H5C 0.3776 −0.1389 0.6813 0.021*
C6C 0.44322 (10) −0.03673 (9) 0.73602 (3) 0.0176 (2)
H6C 0.4545 0.0272 0.7494 0.021*
C7C 0.54870 (10) −0.05396 (10) 0.71333 (4) 0.0223 (3)
H7C1 0.5542 −0.0013 0.6952 0.033*
H7C2 0.5433 −0.1194 0.7016 0.033*
H7C3 0.6166 −0.0523 0.7285 0.033*
C8C 0.42321 (11) −0.11941 (10) 0.76313 (4) 0.0242 (3)
H8C1 0.3555 −0.1036 0.7773 0.036*
H8C2 0.4896 −0.1248 0.7788 0.036*
H8C3 0.4116 −0.1831 0.7507 0.036*
C9C 0.27357 (10) 0.11713 (8) 0.75202 (3) 0.0179 (2)
H9C1 0.3138 0.0819 0.7715 0.021*
H9C2 0.198 0.138 0.7611 0.021*
C10C 0.34170 (12) 0.21007 (9) 0.74141 (4) 0.0240 (3)
H10A 0.35 0.2542 0.7621 0.036*
H10B 0.3015 0.2458 0.7224 0.036*
H10C 0.4172 0.1898 0.7329 0.036*
H2A 0.9000 (17) 0.0306 (14) 0.6530 (5) 0.042 (5)*
H2B 0.5443 (15) −0.0896 (14) 0.5054 (5) 0.039 (5)*
H2C 0.0328 (15) 0.1317 (13) 0.6922 (5) 0.038 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0164 (4) 0.0183 (4) 0.0205 (4) 0.0008 (3) −0.0029 (3) −0.0013 (3)
O2A 0.0166 (5) 0.0134 (4) 0.0417 (6) 0.0027 (3) −0.0069 (4) −0.0028 (4)
N1A 0.0144 (5) 0.0142 (4) 0.0204 (5) 0.0015 (4) −0.0019 (4) −0.0017 (4)
C1A 0.0169 (6) 0.0130 (5) 0.0217 (6) 0.0007 (4) 0.0008 (5) −0.0010 (4)
C2A 0.0166 (6) 0.0126 (5) 0.0213 (6) 0.0012 (4) 0.0015 (4) −0.0001 (4)
C3A 0.0161 (5) 0.0161 (5) 0.0139 (5) −0.0009 (4) 0.0021 (4) 0.0011 (4)
C4A 0.0196 (6) 0.0134 (5) 0.0211 (6) −0.0005 (4) −0.0010 (5) −0.0026 (4)
C5A 0.0201 (6) 0.0132 (5) 0.0222 (6) 0.0019 (4) −0.0010 (5) −0.0016 (4)
C6A 0.0159 (6) 0.0187 (5) 0.0252 (6) 0.0016 (4) −0.0053 (5) −0.0033 (5)
C7A 0.0227 (6) 0.0247 (6) 0.0213 (6) 0.0043 (5) −0.0039 (5) −0.0004 (5)
C8A 0.0183 (6) 0.0253 (6) 0.0388 (8) 0.0002 (5) 0.0000 (5) 0.0039 (6)
C9A 0.0179 (6) 0.0147 (5) 0.0355 (8) 0.0000 (5) −0.0037 (5) −0.0048 (5)
C10A 0.0332 (8) 0.0286 (7) 0.0391 (8) −0.0024 (6) −0.0033 (6) −0.0161 (6)
O1B 0.0207 (4) 0.0217 (4) 0.0277 (5) 0.0048 (4) 0.0034 (4) 0.0038 (4)
O2B 0.0214 (5) 0.0177 (4) 0.0274 (5) 0.0010 (4) 0.0071 (4) 0.0033 (4)
N1B 0.0201 (5) 0.0194 (5) 0.0173 (5) 0.0037 (4) 0.0016 (4) 0.0005 (4)
C1B 0.0196 (6) 0.0173 (5) 0.0155 (6) −0.0006 (4) −0.0025 (4) −0.0012 (4)
C2B 0.0174 (6) 0.0170 (5) 0.0149 (5) −0.0022 (4) −0.0014 (4) −0.0013 (4)
C3B 0.0179 (6) 0.0177 (5) 0.0188 (6) 0.0001 (4) −0.0023 (4) −0.0011 (5)
C4B 0.0273 (7) 0.0211 (6) 0.0237 (6) 0.0041 (5) 0.0042 (5) 0.0058 (5)
C5B 0.0241 (6) 0.0243 (6) 0.0214 (6) 0.0027 (5) 0.0053 (5) 0.0048 (5)
C6B 0.0213 (6) 0.0252 (6) 0.0232 (6) 0.0080 (5) 0.0031 (5) 0.0017 (5)
C7B 0.0227 (7) 0.0444 (9) 0.0481 (10) 0.0044 (6) −0.0057 (7) −0.0040 (8)
C8B 0.0338 (7) 0.0235 (6) 0.0279 (7) 0.0047 (6) 0.0084 (6) −0.0018 (5)
C9B 0.0277 (7) 0.0188 (6) 0.0232 (6) 0.0048 (5) 0.0043 (5) 0.0032 (5)
C10B 0.0335 (8) 0.0424 (8) 0.0232 (7) 0.0129 (7) 0.0007 (6) 0.0075 (6)
O1C 0.0160 (4) 0.0235 (4) 0.0192 (4) 0.0011 (3) −0.0028 (3) −0.0035 (4)
O2C 0.0180 (4) 0.0236 (4) 0.0214 (5) 0.0069 (3) −0.0048 (4) −0.0068 (4)
N1C 0.0144 (5) 0.0148 (4) 0.0170 (5) −0.0002 (4) −0.0019 (4) −0.0004 (4)
C1C 0.0159 (5) 0.0139 (5) 0.0158 (5) −0.0011 (4) 0.0010 (4) 0.0000 (4)
C2C 0.0158 (5) 0.0146 (5) 0.0164 (6) 0.0003 (4) 0.0019 (4) −0.0004 (4)
C3C 0.0154 (5) 0.0157 (5) 0.0150 (5) −0.0025 (4) 0.0014 (4) 0.0014 (4)
C4C 0.0176 (6) 0.0161 (5) 0.0184 (6) −0.0017 (4) −0.0004 (4) −0.0033 (4)
C5C 0.0181 (6) 0.0131 (5) 0.0217 (6) 0.0005 (4) 0.0005 (5) −0.0023 (4)
C6C 0.0152 (6) 0.0170 (5) 0.0207 (6) 0.0007 (4) −0.0049 (4) −0.0013 (5)
C7C 0.0161 (6) 0.0259 (6) 0.0249 (7) −0.0006 (5) −0.0023 (5) 0.0010 (5)
C8C 0.0226 (6) 0.0268 (6) 0.0231 (7) 0.0018 (5) −0.0030 (5) 0.0051 (5)
C9C 0.0192 (6) 0.0170 (5) 0.0174 (6) 0.0009 (4) −0.0027 (4) −0.0035 (5)
C10C 0.0298 (7) 0.0171 (6) 0.0251 (7) −0.0029 (5) −0.0051 (5) −0.0021 (5)

Geometric parameters (Å, º)

O1A—C3A 1.2643 (14) C6B—C7B 1.520 (2)
O2A—C2A 1.3589 (14) C6B—H6B 1
O2A—H2A 0.89 (2) C7B—H7B1 0.98
N1A—C5A 1.3563 (15) C7B—H7B2 0.98
N1A—C1A 1.3846 (15) C7B—H7B3 0.98
N1A—C6A 1.4965 (15) C8B—H8B1 0.98
C1A—C2A 1.3729 (17) C8B—H8B2 0.98
C1A—C9A 1.5077 (16) C8B—H8B3 0.98
C2A—C3A 1.4383 (16) C9B—C10B 1.523 (2)
C3A—C4A 1.4211 (16) C9B—H9B1 0.99
C4A—C5A 1.3583 (17) C9B—H9B2 0.99
C4A—H4A 0.95 C10B—H10D 0.98
C5A—H5A 0.95 C10B—H10E 0.98
C6A—C8A 1.5206 (19) C10B—H10F 0.98
C6A—C7A 1.5218 (17) O1C—C3C 1.2690 (14)
C6A—H6A 1 O2C—C2C 1.3543 (14)
C7A—H7A1 0.98 O2C—H2C 0.869 (18)
C7A—H7A2 0.98 N1C—C5C 1.3541 (15)
C7A—H7A3 0.98 N1C—C1C 1.3819 (15)
C8A—H8A1 0.98 N1C—C6C 1.4977 (14)
C8A—H8A2 0.98 C1C—C2C 1.3766 (16)
C8A—H8A3 0.98 C1C—C9C 1.5028 (16)
C9A—C10A 1.523 (2) C2C—C3C 1.4356 (16)
C9A—H9A1 0.99 C3C—C4C 1.4205 (16)
C9A—H9A2 0.99 C4C—C5C 1.3619 (17)
C10A—H10G 0.98 C4C—H4C 0.95
C10A—H10H 0.98 C5C—H5C 0.95
C10A—H10I 0.98 C6C—C8C 1.5203 (18)
O1B—C3B 1.2614 (15) C6C—C7C 1.5208 (17)
O2B—C2B 1.3533 (15) C6C—H6C 1
O2B—H2B 0.882 (19) C7C—H7C1 0.98
N1B—C5B 1.3552 (16) C7C—H7C2 0.98
N1B—C1B 1.3834 (16) C7C—H7C3 0.98
N1B—C6B 1.4978 (15) C8C—H8C1 0.98
C1B—C2B 1.3702 (17) C8C—H8C2 0.98
C1B—C9B 1.5003 (17) C8C—H8C3 0.98
C2B—C3B 1.4378 (16) C9C—C10C 1.5295 (17)
C3B—C4B 1.4221 (18) C9C—H9C1 0.99
C4B—C5B 1.3600 (18) C9C—H9C2 0.99
C4B—H4B 0.95 C10C—H10A 0.98
C5B—H5B 0.95 C10C—H10B 0.98
C6B—C8B 1.5188 (19) C10C—H10C 0.98
C2A—O2A—H2A 110.7 (12) C6B—C7B—H7B1 109.5
C5A—N1A—C1A 119.69 (10) C6B—C7B—H7B2 109.5
C5A—N1A—C6A 118.90 (10) H7B1—C7B—H7B2 109.5
C1A—N1A—C6A 121.16 (10) C6B—C7B—H7B3 109.5
C2A—C1A—N1A 119.01 (10) H7B1—C7B—H7B3 109.5
C2A—C1A—C9A 119.53 (10) H7B2—C7B—H7B3 109.5
N1A—C1A—C9A 121.46 (10) C6B—C8B—H8B1 109.5
O2A—C2A—C1A 118.02 (10) C6B—C8B—H8B2 109.5
O2A—C2A—C3A 118.85 (10) H8B1—C8B—H8B2 109.5
C1A—C2A—C3A 123.13 (10) C6B—C8B—H8B3 109.5
O1A—C3A—C4A 124.05 (11) H8B1—C8B—H8B3 109.5
O1A—C3A—C2A 121.89 (11) H8B2—C8B—H8B3 109.5
C4A—C3A—C2A 114.06 (10) C1B—C9B—C10B 111.30 (11)
C5A—C4A—C3A 121.53 (11) C1B—C9B—H9B1 109.4
C5A—C4A—H4A 119.2 C10B—C9B—H9B1 109.4
C3A—C4A—H4A 119.2 C1B—C9B—H9B2 109.4
N1A—C5A—C4A 122.47 (11) C10B—C9B—H9B2 109.4
N1A—C5A—H5A 118.8 H9B1—C9B—H9B2 108
C4A—C5A—H5A 118.8 C9B—C10B—H10D 109.5
N1A—C6A—C8A 109.20 (10) C9B—C10B—H10E 109.5
N1A—C6A—C7A 112.09 (10) H10D—C10B—H10E 109.5
C8A—C6A—C7A 111.75 (10) C9B—C10B—H10F 109.5
N1A—C6A—H6A 107.9 H10D—C10B—H10F 109.5
C8A—C6A—H6A 107.9 H10E—C10B—H10F 109.5
C7A—C6A—H6A 107.9 C2C—O2C—H2C 111.8 (12)
C6A—C7A—H7A1 109.5 C5C—N1C—C1C 119.75 (10)
C6A—C7A—H7A2 109.5 C5C—N1C—C6C 118.95 (10)
H7A1—C7A—H7A2 109.5 C1C—N1C—C6C 121.20 (9)
C6A—C7A—H7A3 109.5 C2C—C1C—N1C 119.49 (10)
H7A1—C7A—H7A3 109.5 C2C—C1C—C9C 119.85 (10)
H7A2—C7A—H7A3 109.5 N1C—C1C—C9C 120.64 (10)
C6A—C8A—H8A1 109.5 O2C—C2C—C1C 117.56 (10)
C6A—C8A—H8A2 109.5 O2C—C2C—C3C 119.91 (10)
H8A1—C8A—H8A2 109.5 C1C—C2C—C3C 122.53 (10)
C6A—C8A—H8A3 109.5 O1C—C3C—C4C 123.85 (11)
H8A1—C8A—H8A3 109.5 O1C—C3C—C2C 121.81 (10)
H8A2—C8A—H8A3 109.5 C4C—C3C—C2C 114.33 (10)
C1A—C9A—C10A 112.91 (11) C5C—C4C—C3C 121.72 (11)
C1A—C9A—H9A1 109 C5C—C4C—H4C 119.1
C10A—C9A—H9A1 109 C3C—C4C—H4C 119.1
C1A—C9A—H9A2 109 N1C—C5C—C4C 122.11 (11)
C10A—C9A—H9A2 109 N1C—C5C—H5C 118.9
H9A1—C9A—H9A2 107.8 C4C—C5C—H5C 118.9
C9A—C10A—H10G 109.5 N1C—C6C—C8C 109.31 (10)
C9A—C10A—H10H 109.5 N1C—C6C—C7C 111.33 (10)
H10G—C10A—H10H 109.5 C8C—C6C—C7C 113.03 (10)
C9A—C10A—H10I 109.5 N1C—C6C—H6C 107.6
H10G—C10A—H10I 109.5 C8C—C6C—H6C 107.6
H10H—C10A—H10I 109.5 C7C—C6C—H6C 107.6
C2B—O2B—H2B 111.2 (12) C6C—C7C—H7C1 109.5
C5B—N1B—C1B 119.54 (10) C6C—C7C—H7C2 109.5
C5B—N1B—C6B 117.91 (10) H7C1—C7C—H7C2 109.5
C1B—N1B—C6B 122.53 (10) C6C—C7C—H7C3 109.5
C2B—C1B—N1B 119.65 (11) H7C1—C7C—H7C3 109.5
C2B—C1B—C9B 119.51 (11) H7C2—C7C—H7C3 109.5
N1B—C1B—C9B 120.81 (11) C6C—C8C—H8C1 109.5
O2B—C2B—C1B 118.24 (11) C6C—C8C—H8C2 109.5
O2B—C2B—C3B 118.99 (10) H8C1—C8C—H8C2 109.5
C1B—C2B—C3B 122.76 (11) C6C—C8C—H8C3 109.5
O1B—C3B—C4B 124.36 (11) H8C1—C8C—H8C3 109.5
O1B—C3B—C2B 121.66 (11) H8C2—C8C—H8C3 109.5
C4B—C3B—C2B 113.97 (11) C1C—C9C—C10C 111.99 (10)
C5B—C4B—C3B 121.90 (12) C1C—C9C—H9C1 109.2
C5B—C4B—H4B 119 C10C—C9C—H9C1 109.2
C3B—C4B—H4B 119 C1C—C9C—H9C2 109.2
N1B—C5B—C4B 122.12 (12) C10C—C9C—H9C2 109.2
N1B—C5B—H5B 118.9 H9C1—C9C—H9C2 107.9
C4B—C5B—H5B 118.9 C9C—C10C—H10A 109.5
N1B—C6B—C8B 109.83 (11) C9C—C10C—H10B 109.5
N1B—C6B—C7B 110.73 (11) H10A—C10C—H10B 109.5
C8B—C6B—C7B 111.90 (12) C9C—C10C—H10C 109.5
N1B—C6B—H6B 108.1 H10A—C10C—H10C 109.5
C8B—C6B—H6B 108.1 H10B—C10C—H10C 109.5
C7B—C6B—H6B 108.1
C5A—N1A—C1A—C2A −2.65 (17) O1B—C3B—C4B—C5B 179.55 (13)
C6A—N1A—C1A—C2A −176.91 (11) C2B—C3B—C4B—C5B −1.61 (19)
C5A—N1A—C1A—C9A 178.40 (12) C1B—N1B—C5B—C4B 1.62 (19)
C6A—N1A—C1A—C9A 4.14 (18) C6B—N1B—C5B—C4B −179.73 (12)
N1A—C1A—C2A—O2A 179.30 (11) C3B—C4B—C5B—N1B 0.6 (2)
C9A—C1A—C2A—O2A −1.73 (18) C5B—N1B—C6B—C8B −69.46 (15)
N1A—C1A—C2A—C3A −0.05 (18) C1B—N1B—C6B—C8B 109.15 (13)
C9A—C1A—C2A—C3A 178.92 (11) C5B—N1B—C6B—C7B 54.63 (16)
O2A—C2A—C3A—O1A 2.90 (18) C1B—N1B—C6B—C7B −126.77 (13)
C1A—C2A—C3A—O1A −177.75 (11) C2B—C1B—C9B—C10B −90.30 (14)
O2A—C2A—C3A—C4A −176.74 (11) N1B—C1B—C9B—C10B 87.84 (14)
C1A—C2A—C3A—C4A 2.61 (17) C5C—N1C—C1C—C2C −2.87 (16)
O1A—C3A—C4A—C5A 177.72 (12) C6C—N1C—C1C—C2C −179.21 (10)
C2A—C3A—C4A—C5A −2.65 (17) C5C—N1C—C1C—C9C 178.76 (11)
C1A—N1A—C5A—C4A 2.66 (18) C6C—N1C—C1C—C9C 2.42 (16)
C6A—N1A—C5A—C4A 177.05 (11) N1C—C1C—C2C—O2C −178.26 (10)
C3A—C4A—C5A—N1A 0.14 (19) C9C—C1C—C2C—O2C 0.12 (16)
C5A—N1A—C6A—C8A −89.31 (13) N1C—C1C—C2C—C3C 2.50 (17)
C1A—N1A—C6A—C8A 84.99 (13) C9C—C1C—C2C—C3C −179.13 (11)
C5A—N1A—C6A—C7A 35.08 (15) O2C—C2C—C3C—O1C −0.37 (17)
C1A—N1A—C6A—C7A −150.61 (11) C1C—C2C—C3C—O1C 178.86 (11)
C2A—C1A—C9A—C10A −76.04 (16) O2C—C2C—C3C—C4C 179.80 (10)
N1A—C1A—C9A—C10A 102.90 (14) C1C—C2C—C3C—C4C −0.97 (16)
C5B—N1B—C1B—C2B −2.64 (17) O1C—C3C—C4C—C5C −179.98 (11)
C6B—N1B—C1B—C2B 178.78 (11) C2C—C3C—C4C—C5C −0.15 (17)
C5B—N1B—C1B—C9B 179.23 (12) C1C—N1C—C5C—C4C 1.82 (17)
C6B—N1B—C1B—C9B 0.65 (17) C6C—N1C—C5C—C4C 178.24 (11)
N1B—C1B—C2B—O2B −179.43 (10) C3C—C4C—C5C—N1C −0.29 (18)
C9B—C1B—C2B—O2B −1.27 (17) C5C—N1C—C6C—C8C −80.72 (13)
N1B—C1B—C2B—C3B 1.54 (18) C1C—N1C—C6C—C8C 95.65 (12)
C9B—C1B—C2B—C3B 179.70 (11) C5C—N1C—C6C—C7C 44.86 (14)
O2B—C2B—C3B—O1B 0.40 (18) C1C—N1C—C6C—C7C −138.77 (11)
C1B—C2B—C3B—O1B 179.42 (12) C2C—C1C—C9C—C10C −91.88 (13)
O2B—C2B—C3B—C4B −178.47 (11) N1C—C1C—C9C—C10C 86.48 (13)
C1B—C2B—C3B—C4B 0.55 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2A—H2A···O1Ci 0.89 (2) 1.85 (2) 2.6503 (13) 149.9 (17)
O2B—H2B···O1Bii 0.882 (19) 1.859 (18) 2.6480 (13) 147.8 (17)
O2C—H2C···O1Aiii 0.869 (18) 1.796 (18) 2.5868 (12) 150.3 (17)
C5B—H5B···O1Cii 0.95 2.43 3.3237 (16) 156
C6C—H6C···O2Civ 1 2.59 3.4623 (15) 146
C9B—H9B1···O1Bv 0.99 2.44 3.3548 (16) 153

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1; (iii) x−1, y, z; (iv) x+1/2, y, −z+3/2; (v) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2508).

References

  1. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Brown, S. D., Burgess, J., Fawcett, J., Parsons, S. A., Russell, D. R. & Waltham, E. (1995). Acta Cryst. C51, 1335–1338.
  3. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burgess, J., Fawcett, J., Patel, M. S. & Russell, D. R. (1993). J. Chem. Res. (S) pp. 50–51.
  5. Dobbin, P. S., Hider, R. C., Hall, A. D., Taylor, P. D., Sarpong, P., Porter, J. B., Xiao, G., Xiao, G. & van der Helm, D. (1993). J. Med. Chem. 36, 2448–2458. [DOI] [PubMed]
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Fassihi, A., Abedi, D., Saghaie, L., Sabet, R., Fazeli, H., Bostaki, G., Deilami, O. & Sadinpour, H. (2009). Eur. J. Med. Chem. 44, 2145–2157. [DOI] [PubMed]
  8. Galanello, R. (2007). Ther. Clin. Risk Manage. 3, 795–805. [PMC free article] [PubMed]
  9. Hider, R. C., Taylor, P. D., Walkinshaw, M., Wang, J. L. & van der Helm, D. (1990). J. Chem. Res. (S), pp. 316–317.
  10. Scott, L. E., Page, B. D. G., Patrick, B. O. & Orvig, C. (2008). Dalton Trans. pp. 6364–6367. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Weinberg, G. A. (1994). Antimicrob. Agents Chemother. 38, 997–1003. [DOI] [PMC free article] [PubMed]
  13. Xiao, G., van der Helm, D., Hider, R. C. & Dobbin, P. S. (1992). J. Chem. Soc. Dalton Trans. pp. 3265–3271.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044091/zl2508sup1.cif

e-68-o3235-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044091/zl2508Isup2.hkl

e-68-o3235-Isup2.hkl (352.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044091/zl2508Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES