Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 31;68(Pt 11):o3240–o3241. doi: 10.1107/S1600536812043802

3-[(R)-1-Hy­droxy­butan-2-yl]-1,2,3-benzo­triazin-4(3H)-one

Fernando Rocha-Alonzo a,*, David Morales-Morales b, Simón Hernández-Ortega b, Reyna Reyes-Martínez b, Miguel Parra-Hake c,*
PMCID: PMC3515319  PMID: 23284539

Abstract

The crystal structure of the title compound, C11H13N3O2, is stabilized by O—H⋯O hydrogen bonds, which link the mol­ecules into chains along [100].

Related literature  

For biological and synthetic applications of benzo-1,2,3-triazinones, see: Caliendo et al. (1999); Zheng et al. (2005); Vaisburg et al. (2004); Chollet et al. (2002); Le Diguarher et al. (2003); Clark et al. (1995); Carpino et al. (2004); Janout et al. (2003); Gierasch et al. (2000). For structures of benzo-1,2,3-triazinones, see: Hjortås et al. (1973); Hunt et al. (1983); Reingruber et al. (2009). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Gómez et al. (2005).graphic file with name e-68-o3240-scheme1.jpg

Experimental  

Crystal data  

  • C11H13N3O2

  • M r = 219.24

  • Orthorhombic, Inline graphic

  • a = 8.9668 (13) Å

  • b = 10.1506 (15) Å

  • c = 12.0238 (17) Å

  • V = 1094.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.32 × 0.10 × 0.10 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • 9057 measured reflections

  • 2000 independent reflections

  • 1700 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.076

  • S = 0.93

  • 2000 reflections

  • 149 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812043802/zj2097sup1.cif

e-68-o3240-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043802/zj2097Isup2.hkl

e-68-o3240-Isup2.hkl (98.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043802/zj2097Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.85 (1) 2.03 (1) 2.8712 (19) 171 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge support for this project by the Consejo Nacional de Ciencia y Tecnología (CONACyT grant 36435-E) and Consejo del Sistema Nacional de Educación Tecnológica (COSNET) grant 486–02-P. The authors are indebted to Adrián Ochoa Terán and Ignacio Rivero Espejel for their analytical support of this work.

supplementary crystallographic information

Comment

Benzo-1,2,3-triazinones are compounds widely investigated for their potential biological and chemical properties. These heterocyclic compounds have been studied as anesthetic (Caliendo et al., 1999), anti-inflammatory (Zheng et al., 2005), anticancer (Vaisburg et al.., 2004; Chollet et al., 2002), and antitumoural (Le Diguarher et al., 2003; Clark et al., 1995) agents. In organic synthesis, 1,2,3-triazinones are used as an activating moiety in coupling agents for the preparation of peptides and amino acids (Carpino et al., 2004; Janout et al., 2003; Gierasch et al., 2000). As result of its biological and synthetic importance, we have developed an alternative method for obtaining compounds with 1,2,3-triazinone moiety and in this paper we are describing the crystal structure of the title compound (I, Figure 1).

In the molecular structure of I, the N1=N2 bond [1.2636 (17) Å] is longer than the typical values for N=N double bonds (1.236 Å), whereas the N2–N3 bond [1.3735 (18) Å] is shorter than typical values for a N–N single bonds (1.404 Å) (Allen et al.., 1987). The structure of I shows co-planarity between two rings (1.30°). These measurements are in agreement with other benzo-1,2,3-triazinone crystal structure reports (Hjortås et al., 1973; Hunt et al., 1983; Reingruber et al., 2009). Of interest to pharmaceutical applications, it has been suggested that co-planar structure in benzo-1,2,3-triazinones could give DNA-intercalating abilities such as those displayed by some anticancer agents (Reingruber et al., 2009).

In the crystal structure, adjacent units are arranged into one-dimensional chain along [100] direction via O–H···O intermolecular hydrogen bonds (Figure 2 and Table 1).

Experimental

The synthesis of the tittle compound included reagents and solvents of reagent grade, which were used without further purification. To a solution of 2-[(4R)-4-ethyl-4,5-dihydro-1,3-oxazol-2-yl]aniline (Gómez et al., 2005) (0.89 g, 4.7 mmol, dissolved in 85 ml of methanol) was slowly added isoamyl nitrite (4.40 g, 37.6 mmol, 8 equiv) and the reaction mixture was stirred at room temperature until the disappearance of the aniline (followed by TLC, hexane/ethyl acetate, 3:1). The solvent was evaporated under reduced pressure to give a crude product that was purified by washing with petroleum ether and recrystallization from hexane/ethyl acetate. Crystalline colorless prisms of I were grown by slow diffusion of hexane over saturated ethyl acetate solutions of I. Yield > 99%, based on 2-[(4R)-4-Ethyl-4,5-dihydro-1,3-oxazol-2-yl]aniline; m.p., 89–90 °C. = -5.45° (c 0.22, MeOH). FTIR (KBr pellet, cm-1): 3439, 1686, 1663, 1296. 1H NMR [(CD3)2CO, 200 MHz] d 8.29 (ddd, J = 0.6, 1.5, 7.9 Hz, 2H), 8.16 (ddd, J = 0.6, 1.5, 8.1 Hz, 2H), 8.07 (ddd, J = 1.5, 7.0, 8.2 Hz, 2H), 7.91 (ddd,, J = 1.5, 7.0, 7.9 Hz, 2H), 5.22 (ddd, J = 5.1, 7.6, 15.5 Hz, 2H), 4.10 (dd, J = 8.4, 11.3 Hz, 2H), 3.96 (dd, J = 5.1, 11.3 Hz, 2H), 1.99 (dd, J = 7.5, 15.0 Hz, 4H), 0.90 (t, J = 7.4 Hz, 6H). 13C NMR [(CD3)2CO, 50 MHz] d 156.6, 144.5, 135.8, 133.2, 128.8, 125.7, 120.3, 64.2, 62.3, 24.2, 10.8. ESI-HRMS:220.1091 (100), calculated for [M+H]+, C11H14N3O2+, 220.1081; 192.1025 (8), calculated for [M+H—N2]+, C11H14NO2+, 192.1019. Anal for C11H13N3O2 (% Calcd./found) C, 60.26/60.73; H, 5.98/6.45; N, 19.17/19.47.

Refinement

H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H, C—H = 0.98 for methyn, C—H =0.97 Å for methylene H, and C—H= 0.96 Å for methyl H), and refined using a riding model, with Uiso(H) = 1.2Ueq of the carrier atoms. The hydroxyl H atoms were located in a difference map and refined with O–H = 0.85±0.01 Å, and with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with displacement ellipsoids drawn at 50% probability.

Fig. 2.

Fig. 2.

Packing of I showing the H-bonds. The molecules are forming a one-dimensional chain in the [100] direction. H-bonds are indicated by dashed lines.

Crystal data

C11H13N3O2 F(000) = 464
Mr = 219.24 Dx = 1.331 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4276 reflections
a = 8.9668 (13) Å θ = 2.6–25.2°
b = 10.1506 (15) Å µ = 0.09 mm1
c = 12.0238 (17) Å T = 298 K
V = 1094.4 (3) Å3 Prism, colourless
Z = 4 0.32 × 0.10 × 0.10 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1700 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.044
Graphite monochromator θmax = 25.4°, θmin = 2.6°
Detector resolution: 0.83 pixels mm-1 h = −10→10
ω scans k = −12→12
9057 measured reflections l = −14→14
2000 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0412P)2] where P = (Fo2 + 2Fc2)/3
2000 reflections (Δ/σ)max < 0.001
149 parameters Δρmax = 0.11 e Å3
1 restraint Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.56004 (14) 0.68985 (11) 1.02583 (10) 0.0584 (4)
N1 0.87770 (16) 0.64809 (13) 0.79106 (11) 0.0438 (4)
O2 0.82337 (18) 0.99854 (13) 0.99816 (15) 0.0797 (5)
H2 0.885 (2) 0.9362 (16) 0.992 (2) 0.096*
N2 0.80536 (16) 0.75426 (13) 0.80106 (11) 0.0430 (4)
N3 0.70312 (14) 0.76906 (12) 0.88520 (11) 0.0372 (3)
C4 0.66320 (18) 0.67321 (15) 0.96026 (14) 0.0386 (4)
C4A 0.75154 (18) 0.55429 (16) 0.95179 (13) 0.0362 (4)
C5 0.7338 (2) 0.44941 (16) 1.02537 (14) 0.0469 (4)
H5 0.6642 0.4546 1.0826 0.056*
C6 0.8194 (2) 0.33848 (17) 1.01301 (16) 0.0545 (5)
H6 0.8081 0.2686 1.0623 0.065*
C7 0.9226 (2) 0.32979 (18) 0.92741 (17) 0.0568 (5)
H7 0.9790 0.2535 0.9191 0.068*
C8 0.94229 (19) 0.43244 (17) 0.85511 (16) 0.0517 (5)
H8 1.0127 0.4266 0.7985 0.062*
C8A 0.85625 (17) 0.54564 (15) 0.86684 (13) 0.0382 (4)
C9 0.62783 (18) 0.89954 (14) 0.88408 (15) 0.0420 (4)
H9 0.5594 0.9021 0.9476 0.050*
C10 0.7406 (2) 1.00892 (17) 0.89991 (17) 0.0553 (5)
H10A 0.8088 1.0088 0.8372 0.066*
H10B 0.6886 1.0927 0.8998 0.066*
C11 0.5352 (2) 0.91729 (17) 0.77929 (16) 0.0559 (5)
H11A 0.4838 1.0012 0.7833 0.067*
H11B 0.6015 0.9202 0.7156 0.067*
C12 0.4222 (2) 0.80997 (19) 0.76146 (19) 0.0765 (7)
H12A 0.3540 0.8081 0.8230 0.092*
H12B 0.4722 0.7266 0.7560 0.092*
H12C 0.3681 0.8266 0.6940 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0643 (8) 0.0449 (7) 0.0660 (9) 0.0042 (7) 0.0294 (8) 0.0035 (6)
N1 0.0471 (8) 0.0409 (8) 0.0434 (8) 0.0020 (7) 0.0101 (7) −0.0012 (7)
O2 0.0754 (11) 0.0612 (10) 0.1026 (12) 0.0097 (8) −0.0365 (10) −0.0201 (9)
N2 0.0473 (8) 0.0401 (8) 0.0415 (8) 0.0014 (7) 0.0075 (7) 0.0013 (7)
N3 0.0410 (8) 0.0319 (7) 0.0387 (8) 0.0029 (6) 0.0047 (7) 0.0002 (6)
C4 0.0396 (9) 0.0364 (9) 0.0398 (9) −0.0021 (8) 0.0043 (8) −0.0018 (8)
C4A 0.0380 (9) 0.0339 (8) 0.0366 (9) −0.0030 (7) −0.0024 (8) −0.0013 (7)
C5 0.0532 (11) 0.0426 (10) 0.0448 (10) −0.0046 (9) −0.0004 (9) 0.0019 (8)
C6 0.0638 (12) 0.0392 (10) 0.0604 (12) −0.0009 (9) −0.0109 (10) 0.0083 (9)
C7 0.0538 (12) 0.0365 (10) 0.0800 (14) 0.0100 (9) −0.0071 (11) −0.0013 (10)
C8 0.0435 (10) 0.0465 (11) 0.0651 (12) 0.0061 (9) 0.0060 (9) −0.0089 (10)
C8A 0.0379 (9) 0.0352 (9) 0.0416 (10) −0.0030 (7) −0.0017 (8) −0.0044 (8)
C9 0.0457 (9) 0.0337 (9) 0.0467 (10) 0.0058 (7) 0.0009 (9) −0.0019 (8)
C10 0.0587 (11) 0.0362 (10) 0.0711 (12) 0.0034 (8) −0.0022 (12) −0.0055 (9)
C11 0.0648 (12) 0.0429 (10) 0.0600 (12) 0.0132 (9) −0.0118 (10) −0.0007 (9)
C12 0.0765 (14) 0.0602 (13) 0.0927 (17) 0.0111 (12) −0.0357 (14) −0.0133 (12)

Geometric parameters (Å, º)

O1—C4 1.2271 (18) C7—C8 1.368 (2)
N1—N2 1.2636 (17) C7—H7 0.9300
N1—C8A 1.396 (2) C8—C8A 1.391 (2)
O2—C10 1.399 (2) C8—H8 0.9300
O2—H2 0.846 (9) C9—C10 1.514 (2)
N2—N3 1.3735 (18) C9—C11 1.520 (2)
N3—C4 1.3745 (19) C9—H9 0.9800
N3—C9 1.4866 (19) C10—H10A 0.9700
C4—C4A 1.447 (2) C10—H10B 0.9700
C4A—C8A 1.390 (2) C11—C12 1.503 (2)
C4A—C5 1.393 (2) C11—H11A 0.9700
C5—C6 1.371 (2) C11—H11B 0.9700
C5—H5 0.9300 C12—H12A 0.9600
C6—C7 1.387 (3) C12—H12B 0.9600
C6—H6 0.9300 C12—H12C 0.9600
N2—N1—C8A 120.17 (13) C8—C8A—N1 118.22 (15)
C10—O2—H2 109.5 (17) N3—C9—C10 110.42 (13)
N1—N2—N3 120.40 (12) N3—C9—C11 111.17 (14)
N2—N3—C4 125.45 (12) C10—C9—C11 112.49 (14)
N2—N3—C9 113.20 (12) N3—C9—H9 107.5
C4—N3—C9 121.22 (13) C10—C9—H9 107.5
O1—C4—N3 121.38 (14) C11—C9—H9 107.5
O1—C4—C4A 124.93 (15) O2—C10—C9 113.91 (15)
N3—C4—C4A 113.68 (14) O2—C10—H10A 108.8
C8A—C4A—C5 119.70 (15) C9—C10—H10A 108.8
C8A—C4A—C4 118.29 (14) O2—C10—H10B 108.8
C5—C4A—C4 122.01 (15) C9—C10—H10B 108.8
C6—C5—C4A 119.66 (17) H10A—C10—H10B 107.7
C6—C5—H5 120.2 C12—C11—C9 113.63 (15)
C4A—C5—H5 120.2 C12—C11—H11A 108.8
C5—C6—C7 120.42 (17) C9—C11—H11A 108.8
C5—C6—H6 119.8 C12—C11—H11B 108.8
C7—C6—H6 119.8 C9—C11—H11B 108.8
C8—C7—C6 120.59 (17) H11A—C11—H11B 107.7
C8—C7—H7 119.7 C11—C12—H12A 109.5
C6—C7—H7 119.7 C11—C12—H12B 109.5
C7—C8—C8A 119.55 (17) H12A—C12—H12B 109.5
C7—C8—H8 120.2 C11—C12—H12C 109.5
C8A—C8—H8 120.2 H12A—C12—H12C 109.5
C4A—C8A—C8 120.07 (15) H12B—C12—H12C 109.5
C4A—C8A—N1 121.71 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.85 (1) 2.03 (1) 2.8712 (19) 171 (2)

Symmetry code: (i) x+1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2097).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, V., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Caliendo, G., Fiorino, F., Grieco, P., Perissutti, E., Santagada, V., Meli, R., Mattace-Raso, G., Zanesco, A. & De Nucci, G. (1999). Eur. J. Med. Chem. 34, 1043–1051.
  4. Carpino, L. A., Xia, J., Zhang, C. & El-Faham, A. (2004). J. Org. Chem. 69, 62–71. [DOI] [PubMed]
  5. Chollet, A. M., Le Diguarher, T., Kucharczyk, N., Oynel, A., Bertrand, M., Tucker, G., Guilbaud, N., Burbridge, M., Pastoureau, P., Fradin, A., Sabatini, M., Fauchére, J.-L. & Casara, P. (2002). Bioorg. Med. Chem. 10, 531–544. [DOI] [PubMed]
  6. Clark, A. S., Deans, B., Stevens, M. F. G., Tisdale, M. J., Wheelhouse, R. T., Denny, B. J. & Hartley, J. A. (1995). J. Med. Chem. 38, 1493–1504. [DOI] [PubMed]
  7. Gierasch, T. M., Chytil, M., Didiuk, M. T., Park, J. Y., Urban, J. J., Nolan, S. P. & Verdine, G. L. (2000). Org. Lett. 2, 3999–4002. [DOI] [PubMed]
  8. Gómez, M., Jansat, S., Muller, G., Aullón, G. & Maestro, M. A. (2005). Eur. J. Inorg. Chem. pp. 4341–4351.
  9. Hjortås, J. (1973). Acta Cryst. B29, 1916–1922.
  10. Hunt, W. E., Schwalbe, C. H. & Vaughan, K. (1983). Acta Cryst. C39, 738–740.
  11. Janout, V., Jing, B., Staina, I. V. & Regen, S. L. (2003). J. Am. Chem. Soc. 125, 4436–4437. [DOI] [PubMed]
  12. Le Diguarher, T., Chollet, A. M., Bertrand, M., Henning, P., Raimbaud, E., Sabatini, M. N., Guilbaud, N., Pierré, A., Tucker, G. C. & Casara, P. (2003). J. Med. Chem. 46, 3840–3852. [DOI] [PubMed]
  13. Reingruber, R., Vanderheiden, S., Muller, T., Nieger, M., Es-Sayed, M. & Bräse, S. (2009). Tetrahedron Lett. 50, 3439–3442.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Vaisburg, A., Bernstein, N., Frechette, S., Allan, M., Abou-Khalil, E., Leit, S., Moradei, O., Bouchain, G., Wang, J., Hyung Woo, S., Fournel, M., Yan, P. T., Trachy-Bourget, M.-C., Kalita, A., Beaulieu, C., Li, Z., MacLeod, A. R., Bestermanb, J. M. & Delormea, D. (2004). Bioorg. Med. Chem. Lett. 14, 283–287. [DOI] [PubMed]
  16. Zheng, G. Z., Bhatia, P., Daanen, J., Kolasa, T., Patel, M., Latshaw, S., El Kouhen, O. F., Chang, R., Uchic, M. E., Miller, L., Nakane, M., Lehto, S. J., Honore, M. P., Moreland, R. B., Brioni, J. D. & Stewart, A. O. (2005). J. Med. Chem. 48, 7374–7388. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812043802/zj2097sup1.cif

e-68-o3240-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043802/zj2097Isup2.hkl

e-68-o3240-Isup2.hkl (98.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043802/zj2097Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES