Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 31;68(Pt 11):o3246. doi: 10.1107/S160053681204408X

(4-Fluoro­phen­yl)[8-(4-fluoro­benzo­yl)-2,7-diphen­oxy­naphthalen-1-yl]methan­one

Daichi Hijikata a, Kosuke Sasagawa a, Sayaka Yoshiwaka a, Akiko Okamoto a,*, Noriyuki Yonezawa a
PMCID: PMC3515324  PMID: 23284544

Abstract

In the title compound, C36H22F2O4, the aromatic rings of the benzoyl and phen­oxy groups make dihedral angles of 72.07 (5), 73.24 (5), 62.49 (5) and 77.96 (6)° with the naphthalene ring system. In the crystal, C—H⋯O hydrogen bonds and C—H⋯π inter­actions are observed.

Related literature  

For information on electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011, 2012). For the structures of closely related compounds, see: Watanabe et al. (2010); Sakamoto et al. (2012).graphic file with name e-68-o3246-scheme1.jpg

Experimental  

Crystal data  

  • C36H22F2O4

  • M r = 556.54

  • Orthorhombic, Inline graphic

  • a = 22.3058 (4) Å

  • b = 14.6047 (3) Å

  • c = 16.8302 (3) Å

  • V = 5482.76 (18) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 193 K

  • 0.50 × 0.30 × 0.10 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.691, T max = 0.925

  • 96215 measured reflections

  • 5011 independent reflections

  • 4671 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.091

  • S = 1.06

  • 5011 reflections

  • 380 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204408X/rz5018sup1.cif

e-68-o3246-sup1.cif (37KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204408X/rz5018Isup2.hkl

e-68-o3246-Isup2.hkl (240.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204408X/rz5018Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.40 3.3477 (15) 172
C13—H13⋯Cg ii 0.95 2.87 3.6924 (15) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). As one of applications, the authors have integrated the resulting molecular unit to poly(ether ketone) backbone via nucleophilic aromatic substitution polycondensation (Okamoto et al., 2012). The poly(ether ketone)s composed of 1,8-diaroylenenaphthalene units show unique thermal properties and solubility for organic solvents. These curious features of the polymers can be explained on the basis of structural features of the 1,8-diaroylene naphthalene units. Under these circumstances, the authors have stimulated the X-ray crystal structural study of several 1,8-diaroylated naphthalene analogues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe et al., 2010) and 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012). These molecules have essentially the same non-coplanar features. The aroyl groups at the 1,8-positions of the naphthalene rings in these molecules are twistedly bonded in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. As a part of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, 1,8-bis(4-fluorobenoyl)-2,7-diphenoxynaphthalene, is discussed in this article.

The molecular structure of the title compound is displayed in Fig. 1. Two benzoyl groups at 1,8-positions of the naphthalene ring are situated in opposite directions, anti orientation. The benzene rings of the benzoyl groups make dihedral angles of 72.07 (5) and 73.24 (5)° with the naphthalene ring, respectively. The dihedral angles between the phenyl rings of phenoxy groups and the naphthalene ring system are 62.49 (5) and 77.96 (6)°, respectively. The crystal packing is stabilized by an intermolecular C—H···O hydrogen bond between the oxygen atom (O3) of the carbonyl group of the adjacent molecule and one hydrogen atom (H6) on the naphthalene ring along the c axis (C6—H6···O3i = 2.40 Å; Fig. 2 and Table 1). The C—H···π interaction (C13—H13···Cgii = 2.87 Å; Fig. 3 and Table 1) also contributes to the stabilization of the aromatic ring alignments and the crystal structure.

Experimental

To a 10 ml flask, 1,8-bis(4-fluorobenzoyl)-2,7-dihydroxynaphthalene (1.0 mmol, 404 mg), benzeneboronic acid (4.0 mmol, 487 mg), Cu(OAc)2 (2.0 mmol, 363 mg), activated 4 Å molecular sieves (1.0 g), pyridine (8.0 mmol, 632 mg), methylene chloride (4.0 ml) were placed. The reaction mixture was stirred at room temperature for 48 h. After the reaction, the mixture was extracted with CHCl3. The combined extracts were washed with saturated NH4Claq and 2M aqueous HCl followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by column chromatography (silica gel, hexane/CHCl3, 1:1 v/v) to give the title compound (isolated yield 46%). Furthermore, the isolated product was crystallized from methanol to give single crystal.

1HNMR δ (300 MHz, CDCl3): 6.81(4H, d, J=7.5 Hz), 7.01(4H, t, J=8.5 Hz), 7.05(2H, t, J=7.5 Hz), 7.08(2H, d, J=8.9 Hz), 7.22(4H, t, J=7.5 Hz), 7.81(4H, dd, J=8.5, 5.5 Hz), 7.90(2H, d, J=8.9 Hz) p.p.m..

13CNMR δ (75 MHz, CDCl3): 115.18(d, 2JC—F=22.4 Hz), 117.21, 118.92, 123.92, 124.65, 127.85, 129.69, 130.65, 131.76(d, 3JC—F=10.1 Hz), 132.12, 134.87(d, 4JC—F=2.1 Hz), 153.73, 155.79, 165.64(d, 1JC—F=255.7 Hz), 194.64 p.p.m..

IR (KBr): 1666 (C=O), 1594, 1504, 1486 (Ar, naphthalene), 1262 (=C—O—C) cm-1.

HRMS (m/z): [M + H]+ calcd for C36H23F2O4, 557.1564 found, 557.1569.

m.p. 441.9–443.6 K

Refinement

All H atoms were put in calculated positions and treated as riding on their parent atoms, with C—H = 0.95 Å, and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A partial crystal packing diagram of title compound. The intermolecular C—H···O interactions are shown as dashed lines.

Fig. 3.

Fig. 3.

A partial crystal packing diagram of title compound. The intermolecular C—H···π interactions are shown as dashed lines.

Crystal data

C36H22F2O4 F(000) = 2304
Mr = 556.54 Dx = 1.348 Mg m3
Orthorhombic, Pbcn Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2n 2ab Cell parameters from 89526 reflections
a = 22.3058 (4) Å θ = 3.0–68.2°
b = 14.6047 (3) Å µ = 0.80 mm1
c = 16.8302 (3) Å T = 193 K
V = 5482.76 (18) Å3 Block, colorless
Z = 8 0.50 × 0.30 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 5011 independent reflections
Radiation source: rotating anode 4671 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.016
Detector resolution: 10.000 pixels mm-1 θmax = 68.2°, θmin = 3.6°
ω scans h = −26→26
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −17→17
Tmin = 0.691, Tmax = 0.925 l = −19→19
96215 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.3362P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
5011 reflections Δρmax = 0.17 e Å3
380 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00098 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.42732 (5) 0.97093 (6) 0.71349 (6) 0.0794 (3)
F2 0.21941 (5) 0.25563 (7) 0.76820 (6) 0.0814 (3)
O1 0.51813 (4) 0.65226 (6) 0.53754 (5) 0.0445 (2)
O2 0.22348 (4) 0.46286 (6) 0.46362 (5) 0.0476 (2)
O3 0.40405 (4) 0.54759 (6) 0.64967 (5) 0.0436 (2)
O4 0.28295 (4) 0.62180 (6) 0.58844 (6) 0.0485 (2)
C1 0.42155 (5) 0.59134 (7) 0.51684 (7) 0.0354 (3)
C2 0.47700 (5) 0.61326 (8) 0.48603 (7) 0.0392 (3)
C3 0.49455 (6) 0.58889 (8) 0.40848 (8) 0.0452 (3)
H3 0.5336 0.6032 0.3895 0.054*
C4 0.45474 (6) 0.54468 (8) 0.36146 (8) 0.0450 (3)
H4 0.4662 0.5284 0.3090 0.054*
C5 0.39650 (6) 0.52212 (7) 0.38826 (7) 0.0393 (3)
C6 0.35582 (6) 0.47834 (8) 0.33668 (7) 0.0437 (3)
H6 0.3679 0.4649 0.2838 0.052*
C7 0.29964 (6) 0.45476 (8) 0.36058 (7) 0.0430 (3)
H7 0.2729 0.4244 0.3254 0.052*
C8 0.28201 (5) 0.47632 (8) 0.43851 (7) 0.0389 (3)
C9 0.31971 (5) 0.51855 (7) 0.49203 (7) 0.0353 (3)
C10 0.37908 (5) 0.54365 (7) 0.46804 (7) 0.0351 (3)
C11 0.41193 (5) 0.61111 (8) 0.60379 (7) 0.0362 (3)
C12 0.41448 (5) 0.70744 (8) 0.63178 (7) 0.0380 (3)
C13 0.40891 (6) 0.78060 (9) 0.57966 (8) 0.0460 (3)
H13 0.4022 0.7693 0.5248 0.055*
C14 0.41308 (7) 0.87001 (9) 0.60688 (9) 0.0549 (3)
H14 0.4093 0.9203 0.5714 0.066*
C15 0.42273 (7) 0.88356 (9) 0.68609 (9) 0.0542 (3)
C16 0.42761 (7) 0.81373 (10) 0.73981 (8) 0.0536 (3)
H16 0.4338 0.8260 0.7946 0.064*
C17 0.42336 (6) 0.72486 (9) 0.71226 (8) 0.0458 (3)
H17 0.4265 0.6752 0.7485 0.055*
C18 0.29239 (5) 0.54231 (8) 0.57138 (7) 0.0364 (3)
C19 0.27487 (5) 0.46544 (8) 0.62434 (7) 0.0380 (3)
C20 0.23468 (6) 0.48195 (10) 0.68603 (7) 0.0466 (3)
H20 0.2197 0.5420 0.6946 0.056*
C21 0.21664 (6) 0.41109 (11) 0.73482 (8) 0.0576 (4)
H21 0.1895 0.4219 0.7773 0.069*
C22 0.23845 (7) 0.32519 (11) 0.72109 (8) 0.0564 (4)
C23 0.27865 (7) 0.30606 (10) 0.66188 (9) 0.0555 (4)
H23 0.2936 0.2457 0.6544 0.067*
C24 0.29691 (6) 0.37735 (9) 0.61327 (8) 0.0469 (3)
H24 0.3248 0.3659 0.5718 0.056*
C25 0.55286 (5) 0.72530 (8) 0.51134 (8) 0.0413 (3)
C26 0.53493 (6) 0.78388 (9) 0.45175 (9) 0.0541 (3)
H26 0.4978 0.7747 0.4254 0.065*
C27 0.57176 (7) 0.85648 (10) 0.43073 (10) 0.0621 (4)
H27 0.5600 0.8965 0.3890 0.075*
C28 0.62528 (7) 0.87125 (10) 0.46961 (10) 0.0591 (4)
H28 0.6504 0.9209 0.4548 0.071*
C29 0.64195 (6) 0.81319 (10) 0.53019 (10) 0.0562 (4)
H29 0.6784 0.8238 0.5578 0.067*
C30 0.60613 (6) 0.73941 (9) 0.55138 (8) 0.0473 (3)
H30 0.6181 0.6992 0.5928 0.057*
C31 0.18912 (6) 0.39816 (9) 0.42294 (7) 0.0441 (3)
C32 0.20515 (7) 0.30699 (10) 0.42398 (9) 0.0570 (4)
H32 0.2393 0.2873 0.4530 0.068*
C33 0.17099 (8) 0.24501 (11) 0.38237 (11) 0.0675 (4)
H33 0.1820 0.1822 0.3819 0.081*
C34 0.12115 (9) 0.27327 (12) 0.34162 (10) 0.0717 (5)
H34 0.0982 0.2302 0.3123 0.086*
C35 0.10419 (8) 0.36443 (12) 0.34296 (10) 0.0678 (4)
H35 0.0690 0.3835 0.3158 0.081*
C36 0.13857 (6) 0.42802 (10) 0.38408 (8) 0.0524 (3)
H36 0.1274 0.4908 0.3853 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.1211 (8) 0.0418 (5) 0.0751 (6) −0.0105 (5) 0.0047 (6) −0.0162 (4)
F2 0.0877 (7) 0.0902 (7) 0.0662 (6) −0.0393 (6) −0.0098 (5) 0.0362 (5)
O1 0.0405 (4) 0.0453 (5) 0.0476 (5) −0.0009 (4) 0.0052 (4) 0.0125 (4)
O2 0.0421 (5) 0.0541 (5) 0.0467 (5) 0.0010 (4) 0.0022 (4) −0.0123 (4)
O3 0.0529 (5) 0.0386 (4) 0.0393 (4) 0.0002 (4) 0.0101 (4) 0.0055 (4)
O4 0.0537 (5) 0.0363 (5) 0.0555 (6) 0.0036 (4) 0.0137 (4) −0.0079 (4)
C1 0.0413 (6) 0.0277 (5) 0.0371 (6) 0.0062 (4) 0.0077 (5) 0.0052 (4)
C2 0.0423 (6) 0.0309 (5) 0.0444 (7) 0.0045 (5) 0.0068 (5) 0.0083 (5)
C3 0.0478 (7) 0.0369 (6) 0.0510 (7) 0.0052 (5) 0.0200 (6) 0.0087 (5)
C4 0.0601 (8) 0.0349 (6) 0.0399 (6) 0.0075 (5) 0.0196 (6) 0.0039 (5)
C5 0.0534 (7) 0.0285 (5) 0.0360 (6) 0.0081 (5) 0.0114 (5) 0.0038 (4)
C6 0.0649 (8) 0.0339 (6) 0.0322 (6) 0.0077 (5) 0.0092 (5) 0.0010 (5)
C7 0.0567 (7) 0.0358 (6) 0.0363 (6) 0.0049 (5) 0.0000 (5) −0.0010 (5)
C8 0.0446 (6) 0.0335 (6) 0.0387 (6) 0.0052 (5) 0.0038 (5) 0.0010 (5)
C9 0.0428 (6) 0.0292 (5) 0.0339 (6) 0.0055 (4) 0.0059 (5) 0.0014 (4)
C10 0.0447 (6) 0.0257 (5) 0.0350 (6) 0.0063 (4) 0.0080 (5) 0.0042 (4)
C11 0.0336 (5) 0.0358 (6) 0.0391 (6) 0.0021 (4) 0.0044 (5) 0.0036 (5)
C12 0.0359 (6) 0.0379 (6) 0.0402 (6) 0.0000 (5) 0.0042 (5) −0.0003 (5)
C13 0.0555 (7) 0.0394 (6) 0.0432 (7) 0.0061 (5) −0.0017 (6) −0.0006 (5)
C14 0.0733 (9) 0.0370 (7) 0.0545 (8) 0.0054 (6) −0.0004 (7) 0.0020 (6)
C15 0.0654 (9) 0.0373 (7) 0.0598 (9) −0.0044 (6) 0.0045 (7) −0.0093 (6)
C16 0.0637 (9) 0.0530 (8) 0.0442 (7) −0.0099 (7) 0.0016 (6) −0.0088 (6)
C17 0.0513 (7) 0.0443 (7) 0.0418 (7) −0.0059 (6) 0.0023 (5) 0.0020 (5)
C18 0.0348 (6) 0.0359 (6) 0.0386 (6) 0.0016 (4) 0.0039 (5) −0.0057 (5)
C19 0.0393 (6) 0.0412 (6) 0.0334 (6) −0.0057 (5) 0.0017 (5) −0.0046 (5)
C20 0.0448 (7) 0.0563 (8) 0.0388 (6) −0.0088 (6) 0.0051 (5) −0.0083 (6)
C21 0.0541 (8) 0.0796 (11) 0.0391 (7) −0.0206 (7) 0.0078 (6) 0.0003 (7)
C22 0.0619 (8) 0.0653 (9) 0.0419 (7) −0.0281 (7) −0.0080 (6) 0.0135 (6)
C23 0.0700 (9) 0.0433 (7) 0.0532 (8) −0.0095 (6) −0.0081 (7) 0.0063 (6)
C24 0.0571 (8) 0.0416 (7) 0.0420 (7) −0.0025 (6) 0.0040 (6) −0.0008 (5)
C25 0.0392 (6) 0.0385 (6) 0.0462 (7) 0.0029 (5) 0.0081 (5) 0.0035 (5)
C26 0.0507 (7) 0.0469 (7) 0.0646 (9) −0.0070 (6) −0.0085 (6) 0.0148 (6)
C27 0.0709 (10) 0.0485 (8) 0.0670 (10) −0.0130 (7) −0.0058 (8) 0.0161 (7)
C28 0.0567 (8) 0.0461 (8) 0.0746 (10) −0.0121 (6) 0.0074 (7) 0.0004 (7)
C29 0.0444 (7) 0.0508 (8) 0.0735 (9) −0.0006 (6) −0.0038 (7) −0.0107 (7)
C30 0.0461 (7) 0.0451 (7) 0.0506 (7) 0.0074 (6) −0.0005 (6) −0.0016 (6)
C31 0.0488 (7) 0.0432 (6) 0.0402 (6) −0.0043 (5) 0.0044 (5) −0.0006 (5)
C32 0.0629 (9) 0.0462 (8) 0.0618 (9) 0.0035 (6) 0.0119 (7) 0.0038 (7)
C33 0.0829 (11) 0.0433 (8) 0.0762 (11) −0.0127 (8) 0.0268 (9) −0.0024 (7)
C34 0.0889 (12) 0.0621 (10) 0.0641 (10) −0.0392 (9) 0.0133 (9) −0.0073 (8)
C35 0.0662 (10) 0.0737 (11) 0.0635 (10) −0.0264 (8) −0.0110 (8) 0.0130 (8)
C36 0.0544 (8) 0.0462 (7) 0.0566 (8) −0.0089 (6) −0.0034 (6) 0.0088 (6)

Geometric parameters (Å, º)

F1—C15 1.3607 (15) C17—H17 0.9500
F2—C22 1.3569 (15) C18—C19 1.4858 (17)
O1—C2 1.3848 (15) C19—C24 1.3899 (17)
O1—C25 1.3902 (14) C19—C20 1.3928 (17)
O2—C8 1.3863 (14) C20—C21 1.3810 (19)
O2—C31 1.3959 (15) C20—H20 0.9500
O3—C11 1.2198 (14) C21—C22 1.365 (2)
O4—C18 1.2144 (14) C21—H21 0.9500
C1—C2 1.3788 (16) C22—C23 1.369 (2)
C1—C10 1.4343 (17) C23—C24 1.3854 (19)
C1—C11 1.5069 (16) C23—H23 0.9500
C2—C3 1.4084 (17) C24—H24 0.9500
C3—C4 1.3534 (19) C25—C26 1.3776 (18)
C3—H3 0.9500 C25—C30 1.3815 (18)
C4—C5 1.4141 (17) C26—C27 1.3872 (19)
C4—H4 0.9500 C26—H26 0.9500
C5—C6 1.4092 (18) C27—C28 1.378 (2)
C5—C10 1.4326 (16) C27—H27 0.9500
C6—C7 1.3605 (19) C28—C29 1.377 (2)
C6—H6 0.9500 C28—H28 0.9500
C7—C8 1.4049 (17) C29—C30 1.388 (2)
C7—H7 0.9500 C29—H29 0.9500
C8—C9 1.3781 (17) C30—H30 0.9500
C9—C10 1.4322 (16) C31—C36 1.3746 (19)
C9—C18 1.5084 (15) C31—C32 1.3788 (19)
C11—C12 1.4846 (16) C32—C33 1.375 (2)
C12—C13 1.3881 (17) C32—H32 0.9500
C12—C17 1.3924 (18) C33—C34 1.370 (3)
C13—C14 1.3869 (18) C33—H33 0.9500
C13—H13 0.9500 C34—C35 1.384 (3)
C14—C15 1.365 (2) C34—H34 0.9500
C14—H14 0.9500 C35—C36 1.389 (2)
C15—C16 1.367 (2) C35—H35 0.9500
C16—C17 1.3815 (19) C36—H36 0.9500
C16—H16 0.9500
C2—O1—C25 119.09 (9) C19—C18—C9 117.62 (9)
C8—O2—C31 117.61 (9) C24—C19—C20 119.20 (12)
C2—C1—C10 119.33 (10) C24—C19—C18 121.73 (11)
C2—C1—C11 116.65 (11) C20—C19—C18 119.06 (11)
C10—C1—C11 123.72 (10) C21—C20—C19 120.07 (13)
C1—C2—O1 117.02 (10) C21—C20—H20 120.0
C1—C2—C3 122.63 (12) C19—C20—H20 120.0
O1—C2—C3 120.00 (11) C22—C21—C20 118.95 (13)
C4—C3—C2 118.69 (11) C22—C21—H21 120.5
C4—C3—H3 120.7 C20—C21—H21 120.5
C2—C3—H3 120.7 F2—C22—C21 118.52 (14)
C3—C4—C5 121.83 (11) F2—C22—C23 118.52 (15)
C3—C4—H4 119.1 C21—C22—C23 122.96 (13)
C5—C4—H4 119.1 C22—C23—C24 117.97 (14)
C6—C5—C4 120.04 (11) C22—C23—H23 121.0
C6—C5—C10 120.15 (11) C24—C23—H23 121.0
C4—C5—C10 119.80 (12) C23—C24—C19 120.82 (13)
C7—C6—C5 121.72 (11) C23—C24—H24 119.6
C7—C6—H6 119.1 C19—C24—H24 119.6
C5—C6—H6 119.1 C26—C25—C30 120.81 (12)
C6—C7—C8 118.50 (12) C26—C25—O1 123.07 (11)
C6—C7—H7 120.8 C30—C25—O1 116.04 (11)
C8—C7—H7 120.8 C25—C26—C27 119.24 (13)
C9—C8—O2 116.03 (10) C25—C26—H26 120.4
C9—C8—C7 122.67 (11) C27—C26—H26 120.4
O2—C8—C7 121.09 (11) C28—C27—C26 120.76 (14)
C8—C9—C10 119.64 (10) C28—C27—H27 119.6
C8—C9—C18 115.79 (10) C26—C27—H27 119.6
C10—C9—C18 124.36 (10) C29—C28—C27 119.27 (13)
C9—C10—C5 117.31 (11) C29—C28—H28 120.4
C9—C10—C1 124.99 (10) C27—C28—H28 120.4
C5—C10—C1 117.66 (10) C28—C29—C30 120.85 (13)
O3—C11—C12 121.69 (11) C28—C29—H29 119.6
O3—C11—C1 119.31 (10) C30—C29—H29 119.6
C12—C11—C1 118.97 (10) C25—C30—C29 119.05 (13)
C13—C12—C17 119.14 (11) C25—C30—H30 120.5
C13—C12—C11 121.70 (11) C29—C30—H30 120.5
C17—C12—C11 119.16 (11) C36—C31—C32 121.67 (13)
C14—C13—C12 120.66 (12) C36—C31—O2 117.97 (12)
C14—C13—H13 119.7 C32—C31—O2 120.34 (12)
C12—C13—H13 119.7 C33—C32—C31 119.06 (15)
C15—C14—C13 118.02 (13) C33—C32—H32 120.5
C15—C14—H14 121.0 C31—C32—H32 120.5
C13—C14—H14 121.0 C34—C33—C32 120.42 (15)
F1—C15—C14 118.62 (13) C34—C33—H33 119.8
F1—C15—C16 117.99 (13) C32—C33—H33 119.8
C14—C15—C16 123.39 (13) C33—C34—C35 120.23 (15)
C15—C16—C17 118.26 (13) C33—C34—H34 119.9
C15—C16—H16 120.9 C35—C34—H34 119.9
C17—C16—H16 120.9 C34—C35—C36 120.01 (16)
C16—C17—C12 120.52 (12) C34—C35—H35 120.0
C16—C17—H17 119.7 C36—C35—H35 120.0
C12—C17—H17 119.7 C31—C36—C35 118.55 (14)
O4—C18—C19 122.34 (11) C31—C36—H36 120.7
O4—C18—C9 119.96 (11) C35—C36—H36 120.7
C10—C1—C2—O1 −174.65 (9) C13—C14—C15—F1 179.56 (13)
C11—C1—C2—O1 −0.77 (15) C13—C14—C15—C16 −1.0 (2)
C10—C1—C2—C3 −1.47 (17) F1—C15—C16—C17 −179.61 (13)
C11—C1—C2—C3 172.42 (10) C14—C15—C16—C17 0.9 (2)
C25—O1—C2—C1 −137.78 (11) C15—C16—C17—C12 0.2 (2)
C25—O1—C2—C3 48.85 (14) C13—C12—C17—C16 −1.10 (19)
C1—C2—C3—C4 2.12 (18) C11—C12—C17—C16 178.19 (12)
O1—C2—C3—C4 175.10 (10) C8—C9—C18—O4 −109.42 (13)
C2—C3—C4—C5 −0.34 (18) C10—C9—C18—O4 65.25 (16)
C3—C4—C5—C6 178.22 (11) C8—C9—C18—C19 67.27 (14)
C3—C4—C5—C10 −1.97 (17) C10—C9—C18—C19 −118.07 (12)
C4—C5—C6—C7 179.33 (11) O4—C18—C19—C24 −165.81 (12)
C10—C5—C6—C7 −0.47 (17) C9—C18—C19—C24 17.59 (17)
C5—C6—C7—C8 1.01 (18) O4—C18—C19—C20 15.05 (18)
C31—O2—C8—C9 −161.51 (11) C9—C18—C19—C20 −161.55 (11)
C31—O2—C8—C7 23.62 (16) C24—C19—C20—C21 −0.71 (19)
C6—C7—C8—C9 −1.41 (18) C18—C19—C20—C21 178.45 (11)
C6—C7—C8—O2 173.11 (11) C19—C20—C21—C22 −0.5 (2)
O2—C8—C9—C10 −173.55 (10) C20—C21—C22—F2 −178.51 (12)
C7—C8—C9—C10 1.23 (17) C20—C21—C22—C23 1.4 (2)
O2—C8—C9—C18 1.38 (15) F2—C22—C23—C24 178.84 (12)
C7—C8—C9—C18 176.16 (10) C21—C22—C23—C24 −1.1 (2)
C8—C9—C10—C5 −0.63 (15) C22—C23—C24—C19 −0.2 (2)
C18—C9—C10—C5 −175.11 (10) C20—C19—C24—C23 1.0 (2)
C8—C9—C10—C1 177.13 (10) C18—C19—C24—C23 −178.09 (12)
C18—C9—C10—C1 2.65 (17) C2—O1—C25—C26 26.01 (17)
C6—C5—C10—C9 0.26 (15) C2—O1—C25—C30 −157.08 (11)
C4—C5—C10—C9 −179.54 (10) C30—C25—C26—C27 1.6 (2)
C6—C5—C10—C1 −177.66 (10) O1—C25—C26—C27 178.34 (13)
C4—C5—C10—C1 2.53 (15) C25—C26—C27—C28 −1.1 (2)
C2—C1—C10—C9 −178.62 (10) C26—C27—C28—C29 −0.3 (2)
C11—C1—C10—C9 7.96 (17) C27—C28—C29—C30 1.2 (2)
C2—C1—C10—C5 −0.86 (15) C26—C25—C30—C29 −0.7 (2)
C11—C1—C10—C5 −174.29 (10) O1—C25—C30—C29 −177.67 (12)
C2—C1—C11—O3 −114.60 (12) C28—C29—C30—C25 −0.7 (2)
C10—C1—C11—O3 58.99 (15) C8—O2—C31—C36 −117.82 (13)
C2—C1—C11—C12 63.22 (14) C8—O2—C31—C32 63.82 (16)
C10—C1—C11—C12 −123.19 (12) C36—C31—C32—C33 2.7 (2)
O3—C11—C12—C13 −164.21 (12) O2—C31—C32—C33 −179.01 (12)
C1—C11—C12—C13 18.03 (17) C31—C32—C33—C34 −1.1 (2)
O3—C11—C12—C17 16.52 (17) C32—C33—C34—C35 −1.0 (2)
C1—C11—C12—C17 −161.25 (11) C33—C34—C35—C36 1.6 (3)
C17—C12—C13—C14 1.1 (2) C32—C31—C36—C35 −2.0 (2)
C11—C12—C13—C14 −178.23 (12) O2—C31—C36—C35 179.61 (13)
C12—C13—C14—C15 0.0 (2) C34—C35—C36—C31 −0.1 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C31–C36 ring.

D—H···A D—H H···A D···A D—H···A
C6—H6···O3i 0.95 2.40 3.3477 (15) 172
C13—H13···Cgii 0.95 2.87 3.6924 (15) 145

Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5018).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Okamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2012). Polym. J. In the press.
  5. Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
  6. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  7. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204408X/rz5018sup1.cif

e-68-o3246-sup1.cif (37KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204408X/rz5018Isup2.hkl

e-68-o3246-Isup2.hkl (240.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204408X/rz5018Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES