Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 31;68(Pt 11):o3247–o3248. doi: 10.1107/S1600536812043796

3,5-Bis(benz­yloxy)benzoic acid

Rodolfo Moreno-Fuquen a,*, Carlos Grande b, Rigoberto C Advincula c, Juan C Tenorio d, Javier Ellena d
PMCID: PMC3515325  PMID: 23284545

Abstract

In the title compound, C21H18O4, the outer benzyl rings are disordered over two resolved positions in a 0.50 ratio. The O—CH2 groups form dihedral angles of 4.1 (2) and 10.9 (4)° with the central benzene ring, adopting a syn–anti conformation with respect to this ring. In the crystal, the mol­ecules are linked by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming chains along [010].

Related literature  

For properties of dendrimer chemistry, see: Fréchet (2002). For the diverse applications of 3,5-bis­(benz­yloxy)benzoic acid and its benzoate derivatives, see: Sivakumar et al. (2010); Remya et al. (2008); Hawker & Fréchet (1992). For magnetic and luminiscent properties of lanthanide benzoates, see: Busskamp et al. (2007). For the conformation of O—CH2 groups, see: Xiao et al. (2007). For related structures, see: Gainsford et al. (2009); Zhu et al. (2009). For graph-set motifs, see: Etter (1990). For hydrogen bonding, see: Nardelli (1995); Desiraju & Steiner (1999).graphic file with name e-68-o3247-scheme1.jpg

Experimental  

Crystal data  

  • C21H18O4

  • M r = 334.37

  • Triclinic, Inline graphic

  • a = 5.2801 (2) Å

  • b = 11.6830 (5) Å

  • c = 14.4803 (7) Å

  • α = 83.303 (2)°

  • β = 80.775 (2)°

  • γ = 79.031 (1)°

  • V = 862.17 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.43 × 0.11 × 0.10 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 5626 measured reflections

  • 3084 independent reflections

  • 1801 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.163

  • S = 1.03

  • 3084 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812043796/hg5257sup1.cif

e-68-o3247-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043796/hg5257Isup2.hkl

e-68-o3247-Isup2.hkl (151.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043796/hg5257Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.82 2.6333 (18) 175
C20—H20⋯O1ii 0.93 2.66 3.507 (13) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, and CG thanks the Universidad San Buenaventura, Cali, Colombia, for partial financial support.

supplementary crystallographic information

Comment

Dendrimer chemistry provides new opportunities of research in design of supramolecular architectures (Fréchet, 2002). 3,5-Bis-benzyloxy-benzoic acid (I) was used for the synthesis of luminescent lanthanide coordination complexes that display unique line-like emission bands (Sivakumar et al., 2010; Remya et al., 2008). Lanthanide benzoates and their derivatives have potential applications in a wide variety of fields because their novel luminescent and magnetic properties (Busskamp et al., 2007). The title compound was also used in the synthesis of monodispersed dendritic polyesters with removable chain ends using a convergent growth process (Hawker & Fréchet, 1992). Other related compounds were crystallized and studied by X-ray diffraction (Gainsford et al., 2009; Zhu et al., 2009) and their parameters can be used to compare with the parameters of the title system. A perspective view of the molecule of (I), showing the atomic numbering scheme, is given in Fig. 1. The title compound crystallizes in the triclinic system with a P-1 space group. The outer benzyl rings are disordered over two resolved positions in a 0.50 ratio. The molecules are bonded by intermolecular O—H···O hydrogen bonds of moderate character (Desiraju & Steiner, 1999). Indeed, carbonylic O2 and O1 are linked with an O···O distance of 2.633 (2) Å. The propagation of these interactions generate centrosymmetric rings with graphs-set notation R22(8) (Etter, 1990). Other weak C—H···O intermolecular interactions (Nardelli, 1995) contribute to stabilization of the molecules along b (Fig. 2). Other classical hydrogen bond interactions are not exhibited in the crystal packing. In the title structure, the O—CH2 groups adopt a syn-anti conformation with respect to the central phenyl ring, similar to the behavior presented in the 1,3-Dibenzyloxy-5-(bromomethyl)-benzene system (Zhu et al., 2009), while in other similar structures, the O—CH2 groups adopt a syn-syn conformation (Xiao et al., 2007). The O—CH2 groups, C4—O3—C8—C9 and C6—O4—C15—C16 are essentially planar (r.m.s. deviation of non-hydrogen atoms= 0.0355 Å and 0.0217 Å respectivelly) and form dihedral angles of 4.1 (2)° and 10.9 (4)° with the central phenyl ring.

Experimental

Methyl 3,5-dihydroxybenzoate (2.0g, 12 mmol) was dissolved in 50 ml of acetonitrile and refluxed with potassium carbonate (8.0 g, 58 mmol) for 30 min. The resulting reaction mixture was refluxed at 68° C for 48 h following the addition of benzyl bromide (4.0 g, 24 mmol). The acetonitrile was evaporated off, and the residual mixture was poured into ice cold water. Methyl 3,5-bis-(benzyloxy)benzoate was obtained as a white precipitate. (2.0 g, 5.74 mmol), were taken from the precipitate, which was dissolved in 50 ml of ethanol. To this solution was added (1 g, 17.77 mmol) of KOH and it was placed under reflux. The reaction was followed by TLC until the presence of KOH was not longer observed. The reaction mixture was poured into ice cold water, acidified with dilute HCl, and the resulting precipitate was filtered, washed, dried, and recrystallized from ethanol. Yield, 1.67 g (89%). 3,5-Bis(benzyloxy)benzoic Acid, 1H-NMR (500 MHz) δ(p.p.m.), 7.45–7.46(d, 4H, J= 7 Hz), 7.39–7.41 (t, 4H, J=7 Hz), 7.32–7.35 (t, 2H, J= 7 Hz), 7.16(d, 2H, J= 2.5 Hz), 6.92–6.93 (t, 1H, J= 2.5 Hz), 5.15 (s, 4H). 13C-NMR: 166.88, 159.35, 136.64, 132.79, 138.45, 127.90, 127.63, 107.96, 106.50, 69.45. F T—IR (KBr): 3033 (Ar—H); 1690, 1159, 733, 698 cm-1.

Refinement

All H-atoms were positioned geometrically using riding model with [C—H= 0.93 Å for aromatic, C—H= 0.82 Å for hydroxyl and C—H= 0.97 Å for methylene H atoms. Uiso(H)= 1.2Ueq(C) for aryl and methylene H atoms and 1.5Ueq(O) for hydroxyl H-atom]. During the structure determination disordered sites around the two benzyl groups were found. Trial refinements were used with the split-atom approach for these extra sites with a constrained 50% occupancy each.

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of chains running along [010]. Symmetry code: (i) -x,-y + 1,-z + 1; (ii) -x + 2,-y,-z + 1

Crystal data

C21H18O4 Z = 2
Mr = 334.37 F(000) = 352
Triclinic, P1 Dx = 1.288 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.2801 (2) Å Cell parameters from 3147 reflections
b = 11.6830 (5) Å θ = 2.9–26.4°
c = 14.4803 (7) Å µ = 0.09 mm1
α = 83.303 (2)° T = 295 K
β = 80.775 (2)° Block, colourless
γ = 79.031 (1)° 0.43 × 0.11 × 0.10 mm
V = 862.17 (6) Å3

Data collection

Nonius KappaCCD diffractometer 1801 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
Graphite monochromator θmax = 25.2°, θmin = 3.5°
CCD rotation images, thick slices scans h = −6→6
5626 measured reflections k = −14→14
3084 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.094P)2 + 0.0032P] where P = (Fo2 + 2Fc2)/3
3084 reflections (Δ/σ)max < 0.001
316 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2556 (3) 0.46372 (17) 0.58387 (13) 0.0623 (5)
C2 0.4505 (3) 0.43437 (15) 0.65014 (12) 0.0597 (5)
C3 0.4690 (3) 0.51344 (17) 0.71085 (12) 0.0644 (5)
H3 0.3589 0.5858 0.7109 0.077*
C4 0.6534 (3) 0.48473 (16) 0.77226 (12) 0.0639 (5)
C5 0.8181 (4) 0.37791 (17) 0.77144 (13) 0.0673 (5)
H5 0.9413 0.3585 0.8125 0.081*
C6 0.7989 (4) 0.29977 (17) 0.70920 (14) 0.0690 (5)
C7 0.6163 (3) 0.32636 (17) 0.64802 (13) 0.0690 (5)
H7 0.6042 0.2734 0.6064 0.083*
C8 0.8524 (4) 0.55033 (19) 0.88979 (15) 0.0773 (6)
H8A 1.0236 0.5321 0.8534 0.093*
H8B 0.8282 0.4854 0.9366 0.093*
C9 0.8300 (5) 0.65976 (19) 0.93627 (17) 0.0705 (6) 0.50
C11 0.592 (6) 0.802 (3) 1.0445 (16) 0.132 (8) 0.50
H11 0.4429 0.8290 1.0849 0.159* 0.50
C10 0.626 (5) 0.699 (2) 0.9975 (15) 0.112 (6) 0.50
H10 0.4933 0.6553 1.0109 0.134* 0.50
C12 0.798 (6) 0.854 (3) 1.0238 (16) 0.128 (9) 0.50
H12 0.7988 0.9192 1.0546 0.153* 0.50
C13 1.003 (4) 0.8186 (14) 0.9621 (15) 0.109 (4) 0.50
H13 1.1409 0.8600 0.9478 0.131* 0.50
C14 1.007 (3) 0.7216 (16) 0.9208 (10) 0.089 (4) 0.50
H14 1.1510 0.6978 0.8771 0.107* 0.50
C15 1.0002 (5) 0.1234 (2) 0.64080 (18) 0.0965 (8)
H15A 1.0431 0.1663 0.5806 0.116*
H15B 0.8372 0.0966 0.6407 0.116*
O1 0.2389 (2) 0.39389 (12) 0.52819 (9) 0.0771 (4)
O2 0.1076 (2) 0.56551 (11) 0.58910 (9) 0.0786 (5)
H2 0.0056 0.5746 0.5506 0.118*
O3 0.6562 (3) 0.56890 (12) 0.82994 (9) 0.0821 (5)
O4 0.9731 (3) 0.19714 (13) 0.71375 (11) 0.0918 (5)
C16 1.2137 (4) 0.01969 (19) 0.65555 (17) 0.0819 (6) 0.50
C17 1.311 (3) −0.0007 (14) 0.7341 (13) 0.123 (6) 0.50
H17 1.2647 0.0503 0.7812 0.148* 0.50
C18 1.498 (2) −0.1088 (13) 0.7431 (10) 0.118 (4) 0.50
H18 1.5568 −0.1319 0.8008 0.141* 0.50
C19 1.592 (4) −0.1779 (19) 0.672 (2) 0.107 (7) 0.50
H19 1.7133 −0.2461 0.6796 0.128* 0.50
C20 1.506 (2) −0.1445 (10) 0.5925 (11) 0.119 (4) 0.50
H20 1.5708 −0.1903 0.5427 0.143* 0.50
C21 1.3231 (14) −0.0455 (7) 0.5771 (6) 0.102 (2) 0.50
H21 1.2735 −0.0222 0.5180 0.123* 0.50
C21A 1.388 (3) 0.0108 (12) 0.7188 (12) 0.087 (4) 0.50
H21A 1.3649 0.0714 0.7574 0.105* 0.50
C17A 1.2212 (16) −0.0818 (6) 0.6129 (5) 0.091 (2) 0.50
H17A 1.0879 −0.0863 0.5792 0.110* 0.50
C18A 1.420 (2) −0.1752 (10) 0.6191 (9) 0.104 (3) 0.50
H18A 1.4344 −0.2395 0.5851 0.124* 0.50
C19A 1.604 (4) −0.170 (2) 0.680 (2) 0.116 (9) 0.50
H19A 1.7397 −0.2329 0.6857 0.139* 0.50
C20A 1.588 (3) −0.0765 (13) 0.7298 (13) 0.109 (4) 0.50
H20A 1.7085 −0.0737 0.7693 0.131* 0.50
C11A 0.945 (5) 0.8536 (15) 0.9366 (15) 0.122 (5) 0.50
H11A 1.0322 0.9136 0.9086 0.146* 0.50
C9A 0.8300 (5) 0.65976 (19) 0.93627 (17) 0.0705 (6) 0.50
C10A 0.986 (4) 0.7480 (16) 0.8932 (12) 0.101 (4) 0.50
H10A 1.1073 0.7352 0.8397 0.121* 0.50
C12A 0.777 (5) 0.870 (2) 1.021 (2) 0.118 (8) 0.50
H12A 0.7512 0.9388 1.0496 0.141* 0.50
C14A 0.663 (4) 0.678 (2) 1.0200 (13) 0.081 (3) 0.50
H14A 0.5643 0.6216 1.0477 0.097* 0.50
C13A 0.645 (4) 0.776 (2) 1.0596 (13) 0.096 (5) 0.50
H13A 0.5398 0.7840 1.1172 0.115* 0.50
C16A 1.2137 (4) 0.01969 (19) 0.65555 (17) 0.0819 (6) 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0606 (10) 0.0610 (12) 0.0628 (11) −0.0002 (9) −0.0110 (9) −0.0101 (9)
C2 0.0577 (10) 0.0599 (12) 0.0602 (11) −0.0032 (8) −0.0116 (8) −0.0069 (9)
C3 0.0648 (11) 0.0612 (12) 0.0641 (11) 0.0030 (8) −0.0142 (9) −0.0097 (9)
C4 0.0703 (11) 0.0595 (12) 0.0620 (11) −0.0017 (9) −0.0167 (9) −0.0125 (9)
C5 0.0692 (11) 0.0666 (13) 0.0666 (12) 0.0001 (9) −0.0224 (9) −0.0100 (10)
C6 0.0713 (11) 0.0596 (12) 0.0744 (12) 0.0063 (9) −0.0215 (10) −0.0127 (10)
C7 0.0713 (11) 0.0648 (13) 0.0712 (12) 0.0012 (10) −0.0203 (9) −0.0145 (9)
C8 0.0778 (12) 0.0754 (14) 0.0830 (14) −0.0039 (10) −0.0320 (11) −0.0114 (11)
C9 0.0755 (13) 0.0689 (13) 0.0719 (14) −0.0086 (12) −0.0259 (12) −0.0111 (11)
C11 0.158 (16) 0.098 (11) 0.134 (13) −0.007 (10) 0.007 (10) −0.043 (10)
C10 0.144 (13) 0.095 (10) 0.103 (12) −0.048 (9) −0.001 (8) −0.017 (8)
C12 0.20 (2) 0.100 (12) 0.089 (10) −0.025 (10) −0.011 (10) −0.054 (8)
C13 0.111 (6) 0.079 (8) 0.146 (14) −0.022 (6) −0.025 (7) −0.022 (7)
C14 0.090 (4) 0.078 (7) 0.096 (10) −0.009 (4) −0.006 (6) −0.018 (6)
C15 0.1051 (16) 0.0757 (16) 0.1102 (18) 0.0201 (12) −0.0423 (14) −0.0365 (13)
O1 0.0803 (9) 0.0747 (9) 0.0783 (9) 0.0080 (7) −0.0301 (7) −0.0240 (7)
O2 0.0789 (8) 0.0692 (9) 0.0882 (10) 0.0108 (7) −0.0338 (7) −0.0184 (7)
O3 0.0962 (10) 0.0701 (9) 0.0839 (9) 0.0106 (7) −0.0419 (8) −0.0244 (7)
O4 0.1028 (10) 0.0712 (10) 0.1016 (11) 0.0268 (8) −0.0480 (8) −0.0317 (8)
C16 0.0851 (14) 0.0636 (14) 0.0955 (17) 0.0050 (11) −0.0223 (13) −0.0177 (12)
C17 0.118 (12) 0.134 (9) 0.086 (5) 0.055 (7) −0.017 (7) 0.000 (5)
C18 0.134 (10) 0.096 (9) 0.104 (5) 0.034 (7) −0.035 (7) 0.007 (6)
C19 0.131 (12) 0.051 (9) 0.136 (13) 0.002 (7) −0.035 (11) −0.007 (8)
C20 0.116 (7) 0.079 (7) 0.158 (11) 0.010 (5) −0.011 (6) −0.051 (6)
C21 0.107 (5) 0.080 (5) 0.120 (6) 0.019 (4) −0.032 (4) −0.041 (4)
C21A 0.082 (6) 0.072 (4) 0.107 (9) 0.013 (4) −0.023 (5) −0.037 (5)
C17A 0.112 (5) 0.066 (4) 0.096 (5) −0.002 (3) −0.026 (4) −0.011 (3)
C18A 0.137 (9) 0.054 (5) 0.115 (6) −0.002 (5) −0.022 (6) −0.007 (4)
C19A 0.090 (9) 0.087 (15) 0.138 (14) 0.036 (8) 0.012 (11) 0.002 (9)
C20A 0.087 (6) 0.082 (7) 0.158 (9) −0.002 (5) −0.038 (6) −0.007 (6)
C11A 0.173 (15) 0.083 (10) 0.123 (10) −0.058 (9) −0.027 (9) −0.006 (7)
C9A 0.0755 (13) 0.0689 (13) 0.0719 (14) −0.0086 (12) −0.0259 (12) −0.0111 (11)
C10A 0.143 (9) 0.094 (9) 0.076 (7) −0.058 (6) −0.004 (5) −0.011 (6)
C12A 0.127 (10) 0.082 (8) 0.162 (19) −0.026 (7) −0.043 (11) −0.042 (8)
C14A 0.098 (5) 0.088 (9) 0.059 (6) −0.027 (5) −0.002 (4) −0.017 (5)
C13A 0.109 (7) 0.112 (15) 0.069 (4) −0.025 (8) 0.001 (5) −0.027 (6)
C16A 0.0851 (14) 0.0636 (14) 0.0955 (17) 0.0050 (11) −0.0223 (13) −0.0177 (12)

Geometric parameters (Å, º)

C1—O1 1.236 (2) C15—H15B 0.9700
C1—O2 1.296 (2) O2—H2 0.8200
C1—C2 1.484 (2) C16—C17 1.302 (18)
C2—C3 1.374 (2) C16—C21 1.424 (8)
C2—C7 1.393 (2) C17—C18 1.45 (2)
C3—C4 1.391 (2) C17—H17 0.9300
C3—H3 0.9300 C18—C19 1.36 (3)
C4—O3 1.366 (2) C18—H18 0.9300
C4—C5 1.379 (3) C19—C20 1.30 (4)
C5—C6 1.383 (3) C19—H19 0.9300
C5—H5 0.9300 C20—C21 1.379 (14)
C6—O4 1.367 (2) C20—H20 0.9300
C6—C7 1.381 (3) C21—H21 0.9300
C7—H7 0.9300 C21A—C20A 1.33 (2)
C8—O3 1.425 (2) C21A—H21A 0.9300
C8—C9 1.490 (3) C17A—C18A 1.369 (14)
C8—H8A 0.9700 C17A—H17A 0.9300
C8—H8B 0.9700 C18A—C19A 1.42 (4)
C9—C14 1.26 (2) C18A—H18A 0.9300
C9—C10 1.33 (3) C19A—C20A 1.36 (3)
C11—C12 1.32 (5) C19A—H19A 0.9300
C11—C10 1.41 (4) C20A—H20A 0.9300
C11—H11 0.9300 C11A—C12A 1.40 (3)
C10—H10 0.9300 C11A—C10A 1.41 (3)
C12—C13 1.32 (3) C11A—H11A 0.9300
C12—H12 0.9300 C10A—H10A 0.9300
C13—C14 1.34 (3) C12A—C13A 1.42 (4)
C13—H13 0.9300 C12A—H12A 0.9300
C14—H14 0.9300 C14A—C13A 1.32 (3)
C15—O4 1.413 (3) C14A—H14A 0.9300
C15—C16 1.510 (3) C13A—H13A 0.9300
C15—H15A 0.9700
O1—C1—O2 123.33 (16) C16—C15—H15A 109.8
O1—C1—C2 121.00 (16) O4—C15—H15B 109.8
O2—C1—C2 115.67 (16) C16—C15—H15B 109.8
C3—C2—C7 121.05 (17) H15A—C15—H15B 108.3
C3—C2—C1 120.35 (16) C1—O2—H2 109.5
C7—C2—C1 118.59 (16) C4—O3—C8 118.81 (14)
C2—C3—C4 119.62 (17) C6—O4—C15 117.70 (15)
C2—C3—H3 120.2 C17—C16—C21 121.6 (8)
C4—C3—H3 120.2 C17—C16—C15 120.5 (8)
O3—C4—C5 124.69 (16) C21—C16—C15 117.4 (4)
O3—C4—C3 115.23 (16) C16—C17—C18 115.3 (14)
C5—C4—C3 120.07 (17) C16—C17—H17 122.4
C4—C5—C6 119.60 (17) C18—C17—H17 122.4
C4—C5—H5 120.2 C19—C18—C17 123.6 (17)
C6—C5—H5 120.2 C19—C18—H18 118.2
O4—C6—C7 124.09 (17) C17—C18—H18 118.2
O4—C6—C5 114.69 (16) C20—C19—C18 117.0 (17)
C7—C6—C5 121.21 (17) C20—C19—H19 121.5
C6—C7—C2 118.43 (17) C18—C19—H19 121.5
C6—C7—H7 120.8 C19—C20—C21 124.2 (14)
C2—C7—H7 120.8 C19—C20—H20 117.9
O3—C8—C9 107.77 (15) C21—C20—H20 117.9
O3—C8—H8A 110.2 C20—C21—C16 117.1 (9)
C9—C8—H8A 110.2 C20—C21—H21 121.4
O3—C8—H8B 110.2 C16—C21—H21 121.4
C9—C8—H8B 110.2 C20A—C21A—H21A 116.9
H8A—C8—H8B 108.5 C18A—C17A—H17A 119.2
C14—C9—C10 114.7 (15) C17A—C18A—C19A 117.3 (13)
C14—C9—C8 122.2 (8) C17A—C18A—H18A 121.3
C10—C9—C8 123.1 (13) C19A—C18A—H18A 121.3
C12—C11—C10 112 (3) C20A—C19A—C18A 122.3 (15)
C12—C11—H11 124.2 C20A—C19A—H19A 118.8
C10—C11—H11 124.2 C18A—C19A—H19A 118.8
C9—C10—C11 126 (3) C21A—C20A—C19A 116.2 (16)
C9—C10—H10 116.9 C21A—C20A—H20A 121.9
C11—C10—H10 116.9 C19A—C20A—H20A 121.9
C13—C12—C11 124 (3) C12A—C11A—C10A 121.5 (19)
C13—C12—H12 117.9 C12A—C11A—H11A 119.3
C11—C12—H12 117.9 C10A—C11A—H11A 119.3
C12—C13—C14 118 (2) C11A—C10A—H10A 121.4
C12—C13—H13 121.1 C11A—C12A—C13A 117 (2)
C14—C13—H13 121.1 C11A—C12A—H12A 121.6
C9—C14—C13 125.4 (14) C13A—C12A—H12A 121.6
C9—C14—H14 117.3 C13A—C14A—H14A 120.4
C13—C14—H14 117.3 C14A—C13A—C12A 125 (2)
O4—C15—C16 109.24 (18) C14A—C13A—H13A 117.6
O4—C15—H15A 109.8 C12A—C13A—H13A 117.6
O1—C1—C2—C3 179.21 (16) C10—C9—C14—C13 1.5 (18)
O2—C1—C2—C3 −1.0 (2) C8—C9—C14—C13 −177.8 (11)
O1—C1—C2—C7 0.4 (3) C12—C13—C14—C9 0 (3)
O2—C1—C2—C7 −179.85 (16) C5—C4—O3—C8 4.4 (3)
C7—C2—C3—C4 −1.0 (3) C3—C4—O3—C8 −175.13 (16)
C1—C2—C3—C4 −179.76 (15) C9—C8—O3—C4 173.58 (17)
C2—C3—C4—O3 −179.84 (15) C7—C6—O4—C15 12.0 (3)
C2—C3—C4—C5 0.6 (3) C5—C6—O4—C15 −167.82 (19)
O3—C4—C5—C6 −179.43 (16) C16—C15—O4—C6 176.14 (18)
C3—C4—C5—C6 0.1 (3) O4—C15—C16—C17 11.0 (9)
C4—C5—C6—O4 179.37 (17) O4—C15—C16—C21 −161.8 (4)
C4—C5—C6—C7 −0.4 (3) C21—C16—C17—C18 −12.9 (17)
O4—C6—C7—C2 −179.70 (18) C15—C16—C17—C18 174.6 (9)
C5—C6—C7—C2 0.1 (3) C16—C17—C18—C19 8 (2)
C3—C2—C7—C6 0.6 (3) C17—C18—C19—C20 −1 (3)
C1—C2—C7—C6 179.44 (16) C18—C19—C20—C21 −1 (3)
O3—C8—C9—C14 −114.4 (7) C19—C20—C21—C16 −3.7 (18)
O3—C8—C9—C10 66.4 (9) C17—C16—C21—C20 11.5 (13)
C14—C9—C10—C11 1 (2) C15—C16—C21—C20 −175.8 (6)
C8—C9—C10—C11 179.8 (15) C17A—C18A—C19A—C20A −1 (3)
C12—C11—C10—C9 −3 (3) C18A—C19A—C20A—C21A 0 (3)
C10—C11—C12—C13 4 (4) C10A—C11A—C12A—C13A −1 (3)
C11—C12—C13—C14 −3 (4) C11A—C12A—C13A—C14A −3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 1.82 2.6333 (18) 175
C20—H20···O1ii 0.93 2.66 3.507 (13) 153

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5257).

References

  1. Busskamp, H., Deacon, G. B., Hilder, M., Junk, P. C., Kynast, U. H., Lee, W. W. & Turner, D. R. (2007). CrystEngComm, 9, 394–411.
  2. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 350–362. New York: Oxford University Press Inc.
  3. Etter, M. (1990). Acc. Chem. Res. 23, 120–126.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Fréchet, J. M. J. (2002). PNAS, 99, 4782-4787.
  7. Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2009). Acta Cryst. E65, o3261–o3262. [DOI] [PMC free article] [PubMed]
  8. Hawker, C. & Fréchet, J. M. J. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 2459–2469.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  11. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Remya, P. N., Biju, S., Reddy, M. L., Cowley, A. H. & Findlater, M. (2008). Inorg. Chem. 47, 7396–7404. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sivakumar, S., Reddy, M. L., Cowley, A. H. & Vasudevan, K. V. (2010). Dalton Trans. 39, 776–786. [DOI] [PubMed]
  16. Xiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951–957.
  17. Zhu, P., Zhao, Y., Chen, H., Cui, Q. & Wei, Q. (2009). Acta Cryst. E65, o823. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812043796/hg5257sup1.cif

e-68-o3247-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043796/hg5257Isup2.hkl

e-68-o3247-Isup2.hkl (151.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043796/hg5257Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES