Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 31;68(Pt 11):o3249. doi: 10.1107/S1600536812043966

2-Chloro-N-[1-(4-chloro­phen­yl)-3-cyano-1H-pyrazol-5-yl]acetamide

Hai-ping Mu a, Yang Yang a, Qiang-hua Jiang a, Xiao-dong Fu a, Rong Wan a,*
PMCID: PMC3515326  PMID: 23284546

Abstract

The title compound, C12H8Cl2N4O, was synthesized by the reaction of 5-amino-1-(4-chloro­phen­yl)-1H-pyrazole-3-carbonitrile and 2-chloro­acetyl chloride. The dihedral angle between the pyrazole and benzene rings is 30.7 (3)°. In the crystal structure, strong N—H⋯O hydrogen bonds link the mol­ecules into chains along [001]. C—H⋯N hydrogen bonds are also present.

Related literature  

The title compound is important in the synthesis of derivatives of the insecticide Fipronil {systematic name: (RS)-5-amino-1-[2,6-dichloro-4-(trifluoro­meth­yl)phen­yl]-4-(trifluoro­methyl­sulfin­yl)-1H-pyrazole-3-carbonitrile}. For the biological activity of N-pyrazole derivatives, see: Zhao et al. (2010); Liu et al. (2010). For bond-length data, see: Allen et al. (1987). For the structure of 2-chloro-N-(3-cyano-1-(2,6-dichloro-4-(tri­fluoro­meth­yl)phen­yl)-1H-pyrazol-5-yl)acetamide, see: Zhang et al. (2012).graphic file with name e-68-o3249-scheme1.jpg

Experimental  

Crystal data  

  • C12H8Cl2N4O

  • M r = 295.12

  • Orthorhombic, Inline graphic

  • a = 18.493 (4) Å

  • b = 13.815 (3) Å

  • c = 5.060 (1) Å

  • V = 1292.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.865, T max = 0.952

  • 2646 measured reflections

  • 2606 independent reflections

  • 2255 reflections with I > 2σ(I)

  • R int = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.099

  • S = 1.01

  • 2606 reflections

  • 173 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983), 1271 Friedel pairs

  • Flack parameter: 0.09 (9)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXS97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812043966/rn2106sup1.cif

e-68-o3249-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043966/rn2106Isup2.hkl

e-68-o3249-Isup2.hkl (128KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043966/rn2106Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Oi 0.86 2.16 2.858 (3) 137
C12—H12C⋯N2ii 0.97 2.52 3.445 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Science and Technology Project of Jiangsu Province (No. BE2011352) for financial support and acknowledge the help of members of the laboratory.

supplementary crystallographic information

Comment

N-Pyrazole derivatives are of great interest because of their diverse biological activities such as insecticidal (Zhao et al., 2010) and antifungal activities (Liu et al., 2010). The title compound is an important intermediate in the synthesis of N-aromatic pyrazole derivatives. The molecular structure of (I) is shown in Fig.1. In this structure, bond length and angles are within the normal range (Allen et al., 1987) and the mean deviation from the plane(N1/N2/C9/C8/C7) is 0.0045 Å. The dihedral angle between the pyrazole and phenyl ring in compound (I) is 30.7 (3)°, which is smaller than the angle in the structure of 2-chloro-N- (3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-1H-pyrazol-5-yl) acetamide (Zhang et al., 2012), which is 71.5 (3)°. While bond lengths of the two compounds are similar, the difference in the dihedral angle probably results from greater steric hindrance in the (trifluoromethyl)phenyl derivative. In the crystal structure, strong N—H···O hydrogen bonds link the molecules into infinite one-dimensional chains along the [001] direction. Intermolecular C—H···N and N—H···O hydrogen bonds (Table 1) may help to establish the molecular conformation of (I). (Fig. 2)

Experimental

To a stirred solution of 5-amino-1-(4-chlorophenyl)-1H-pyrazole-3-carbonitrile (5 mmol) in THF (20 ml) was added 2-chloroacetyl chloride (5 mmol) dropwise at 0–5°C. During the addition, the solution is cooled in an ice-salt bath. After the cooling bath had been removed, the reaction mixture was allowed to stand for 2 h at room temperature. The crude product (I) precipitated and was filtered. Pure compound (I) was obtained by crystallization from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H···O and C—H···N hydrogen bonds.

Crystal data

C12H8Cl2N4O Dx = 1.516 Mg m3
Mr = 295.12 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 25 reflections
a = 18.493 (4) Å θ = 9–13°
b = 13.815 (3) Å µ = 0.50 mm1
c = 5.060 (1) Å T = 293 K
V = 1292.7 (4) Å3 Block, colorless
Z = 4 0.30 × 0.20 × 0.10 mm
F(000) = 600

Data collection

Enraf–Nonius CAD-4 diffractometer 2255 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
Graphite monochromator θmax = 25.4°, θmin = 2.2°
ω/2θ scans h = −22→22
Absorption correction: ψ scan (North et al., 1968) k = 0→16
Tmin = 0.865, Tmax = 0.952 l = −6→0
2646 measured reflections 3 standard reflections every 200 reflections
2606 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.064P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.16 e Å3
2606 reflections Δρmin = −0.24 e Å3
173 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.023 (2)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1271 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.09 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O 0.20761 (11) 0.90238 (15) −0.4786 (4) 0.0473 (5)
Cl1 0.07270 (4) 0.51152 (5) 0.76028 (19) 0.0634 (3)
N1 0.27787 (9) 0.73978 (13) 0.1128 (5) 0.0330 (5)
C1 0.25223 (13) 0.63629 (18) 0.4875 (6) 0.0385 (6)
H1A 0.3011 0.6381 0.5309 0.046*
Cl2 0.07546 (4) 0.99063 (6) 0.07496 (17) 0.0548 (2)
N2 0.34595 (10) 0.70361 (14) 0.0940 (6) 0.0397 (5)
C2 0.20505 (14) 0.58124 (18) 0.6366 (6) 0.0428 (7)
H2B 0.2220 0.5449 0.7785 0.051*
N3 0.20572 (11) 0.87436 (15) −0.0382 (5) 0.0339 (5)
H3A 0.1824 0.8829 0.1070 0.041*
C3 0.13257 (15) 0.58071 (18) 0.5729 (6) 0.0432 (6)
C4 0.10698 (14) 0.63335 (19) 0.3602 (7) 0.0442 (7)
H4A 0.0579 0.6325 0.3198 0.053*
N4 0.51184 (12) 0.73394 (18) −0.1943 (8) 0.0707 (9)
C5 0.15393 (13) 0.68719 (18) 0.2079 (6) 0.0407 (6)
H5A 0.1370 0.7220 0.0632 0.049*
C6 0.22697 (12) 0.68864 (16) 0.2739 (6) 0.0330 (6)
C7 0.27029 (12) 0.82144 (17) −0.0352 (5) 0.0329 (6)
C8 0.33442 (12) 0.83866 (18) −0.1594 (6) 0.0388 (6)
H8A 0.3457 0.8887 −0.2752 0.047*
C9 0.37887 (13) 0.76412 (17) −0.0731 (6) 0.0390 (6)
C10 0.45341 (15) 0.74665 (18) −0.1393 (8) 0.0492 (8)
C11 0.17925 (12) 0.91243 (17) −0.2649 (5) 0.0314 (5)
C12 0.10972 (13) 0.96827 (18) −0.2494 (6) 0.0357 (6)
H12B 0.0732 0.9332 −0.3483 0.043*
H12C 0.1168 1.0301 −0.3365 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O 0.0494 (11) 0.0672 (14) 0.0253 (11) 0.0153 (10) 0.0035 (9) 0.0035 (9)
Cl1 0.0730 (5) 0.0656 (5) 0.0516 (5) −0.0249 (4) 0.0147 (5) 0.0028 (5)
N1 0.0321 (10) 0.0332 (10) 0.0337 (13) 0.0041 (8) −0.0021 (10) −0.0001 (11)
C1 0.0422 (14) 0.0375 (14) 0.0358 (16) 0.0021 (11) −0.0055 (13) −0.0011 (12)
Cl2 0.0469 (4) 0.0817 (5) 0.0359 (4) 0.0234 (3) 0.0066 (4) −0.0023 (4)
N2 0.0315 (10) 0.0376 (10) 0.0499 (15) 0.0067 (8) −0.0030 (11) 0.0018 (13)
C2 0.0568 (16) 0.0392 (13) 0.0324 (16) 0.0039 (12) −0.0011 (13) 0.0053 (13)
N3 0.0391 (11) 0.0391 (12) 0.0235 (11) 0.0119 (9) 0.0029 (10) 0.0032 (10)
C3 0.0561 (16) 0.0395 (13) 0.0341 (15) −0.0064 (11) 0.0088 (15) −0.0043 (14)
C4 0.0385 (14) 0.0512 (16) 0.0430 (17) −0.0066 (12) 0.0014 (14) −0.0034 (15)
N4 0.0401 (14) 0.0684 (16) 0.104 (3) 0.0034 (11) 0.0086 (17) 0.008 (2)
C5 0.0430 (14) 0.0443 (14) 0.0348 (16) 0.0042 (11) −0.0031 (12) 0.0025 (13)
C6 0.0360 (12) 0.0303 (11) 0.0328 (14) 0.0022 (9) 0.0007 (11) −0.0015 (12)
C7 0.0346 (12) 0.0344 (13) 0.0298 (13) 0.0039 (10) −0.0011 (12) −0.0003 (12)
C8 0.0409 (13) 0.0370 (13) 0.0384 (16) 0.0004 (11) 0.0043 (13) 0.0043 (13)
C9 0.0324 (12) 0.0382 (13) 0.0465 (17) −0.0010 (11) 0.0011 (13) −0.0002 (13)
C10 0.0397 (14) 0.0411 (15) 0.067 (2) −0.0002 (11) 0.0052 (15) 0.0078 (16)
C11 0.0344 (12) 0.0338 (12) 0.0259 (13) 0.0009 (9) −0.0002 (12) 0.0016 (12)
C12 0.0366 (12) 0.0425 (13) 0.0279 (13) 0.0059 (10) −0.0019 (12) 0.0030 (13)

Geometric parameters (Å, º)

O—C11 1.210 (3) N3—H3A 0.8600
Cl1—C3 1.743 (3) C3—C4 1.382 (4)
N1—N2 1.358 (2) C4—C5 1.379 (4)
N1—C7 1.361 (3) C4—H4A 0.9300
N1—C6 1.431 (3) N4—C10 1.129 (3)
C1—C6 1.382 (4) C5—C6 1.391 (3)
C1—C2 1.382 (4) C5—H5A 0.9300
C1—H1A 0.9300 C7—C8 1.363 (3)
Cl2—C12 1.786 (3) C8—C9 1.388 (3)
N2—C9 1.336 (4) C8—H8A 0.9300
C2—C3 1.379 (4) C9—C10 1.439 (4)
C2—H2B 0.9300 C11—C12 1.502 (3)
N3—C11 1.354 (3) C12—H12B 0.9700
N3—C7 1.400 (3) C12—H12C 0.9700
N2—N1—C7 111.21 (19) C1—C6—C5 120.6 (2)
N2—N1—C6 117.91 (19) C1—C6—N1 118.8 (2)
C7—N1—C6 130.88 (18) C5—C6—N1 120.6 (2)
C6—C1—C2 120.1 (2) N1—C7—C8 108.0 (2)
C6—C1—H1A 119.9 N1—C7—N3 121.8 (2)
C2—C1—H1A 119.9 C8—C7—N3 130.2 (2)
C9—N2—N1 103.70 (19) C7—C8—C9 103.9 (2)
C3—C2—C1 119.3 (3) C7—C8—H8A 128.0
C3—C2—H2B 120.4 C9—C8—H8A 128.0
C1—C2—H2B 120.4 N2—C9—C8 113.2 (2)
C11—N3—C7 121.4 (2) N2—C9—C10 118.6 (2)
C11—N3—H3A 119.3 C8—C9—C10 128.2 (3)
C7—N3—H3A 119.3 N4—C10—C9 179.0 (4)
C2—C3—C4 120.8 (3) O—C11—N3 123.8 (2)
C2—C3—Cl1 119.6 (2) O—C11—C12 118.5 (2)
C4—C3—Cl1 119.6 (2) N3—C11—C12 117.7 (2)
C5—C4—C3 120.2 (2) C11—C12—Cl2 116.15 (19)
C5—C4—H4A 119.9 C11—C12—H12B 108.2
C3—C4—H4A 119.9 Cl2—C12—H12B 108.2
C4—C5—C6 119.0 (3) C11—C12—H12C 108.2
C4—C5—H5A 120.5 Cl2—C12—H12C 108.2
C6—C5—H5A 120.5 H12B—C12—H12C 107.4
C7—N1—N2—C9 −1.3 (3) C6—N1—C7—C8 −177.8 (3)
C6—N1—N2—C9 178.0 (2) N2—N1—C7—N3 −177.1 (2)
C6—C1—C2—C3 −1.2 (4) C6—N1—C7—N3 3.8 (4)
C1—C2—C3—C4 0.9 (4) C11—N3—C7—N1 −139.4 (3)
C1—C2—C3—Cl1 −179.9 (2) C11—N3—C7—C8 42.6 (4)
C2—C3—C4—C5 0.2 (4) N1—C7—C8—C9 −0.7 (3)
Cl1—C3—C4—C5 −179.0 (2) N3—C7—C8—C9 177.5 (3)
C3—C4—C5—C6 −0.9 (4) N1—N2—C9—C8 0.8 (3)
C2—C1—C6—C5 0.5 (4) N1—N2—C9—C10 −179.9 (3)
C2—C1—C6—N1 −175.9 (2) C7—C8—C9—N2 −0.1 (3)
C4—C5—C6—C1 0.5 (4) C7—C8—C9—C10 −179.3 (3)
C4—C5—C6—N1 176.9 (2) N2—C9—C10—N4 169 (22)
N2—N1—C6—C1 29.2 (3) C8—C9—C10—N4 −12 (22)
C7—N1—C6—C1 −151.8 (3) C7—N3—C11—O 1.6 (4)
N2—N1—C6—C5 −147.2 (2) C7—N3—C11—C12 −179.9 (2)
C7—N1—C6—C5 31.8 (4) O—C11—C12—Cl2 −174.0 (2)
N2—N1—C7—C8 1.3 (3) N3—C11—C12—Cl2 7.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···Oi 0.86 2.16 2.858 (3) 137
C12—H12C···N2ii 0.97 2.52 3.445 (3) 160

Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2106).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem 47, 897–902.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zhang, J., He, Q., Jiang, Q., Mu, H. & Wan, R. (2012). Acta Cryst. E68, o104. [DOI] [PMC free article] [PubMed]
  9. Zhao, Q. Q., Li, Y. Q., Xiong, L. X. & Wang, Q. M. (2010). J. Agric. Food Chem. 58, 4992–4998. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812043966/rn2106sup1.cif

e-68-o3249-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043966/rn2106Isup2.hkl

e-68-o3249-Isup2.hkl (128KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043966/rn2106Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES