Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 31;68(Pt 11):o3251. doi: 10.1107/S160053681204425X

6,8-Dihy­droxy-8a-methyl-3,5-dimethyl­idenedeca­hydro­naphtho­[2,3-b]furan-2(3H)-one

Ting-ting Liu a, Hai-Bo Wu a, Wen-Shu Wang a,*
PMCID: PMC3515328  PMID: 23284548

Abstract

The title compound, C15H20O4, is a eudesmanolide isolated from the Chinese medicinal plant Carpesium tris­te Maxim. The mol­ecule contains three rings, viz. two fused six-membered rings in chair conformations and a five-membered ring in a flattened envelope conformation. In the crystal, two hy­droxy groups are involved in the formation of intra- and inter­molecular O—H⋯O hydrogen bonds. The H atoms in these groups are split, with site-occupation factors of 0.5. The inter­molecular hydrogen bonds link mol­ecules into chains propagating in [010].

Related literature  

For related compounds extracted from Carpesium tris­te Maxim, see: Masao & Fumiko (1975).graphic file with name e-68-o3251-scheme1.jpg

Experimental  

Crystal data  

  • C15H20O4

  • M r = 264.31

  • Tetragonal, Inline graphic

  • a = 6.4737 (4) Å

  • c = 62.438 (8) Å

  • V = 2616.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 133 K

  • 0.54 × 0.48 × 0.32 mm

Data collection  

  • Rigaku AFC10/Saturn-724+ CCD diffractometer

  • 19607 measured reflections

  • 1990 independent reflections

  • 1826 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.124

  • S = 1.00

  • 1990 reflections

  • 185 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204425X/rk2376sup1.cif

e-68-o3251-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204425X/rk2376Isup2.hkl

e-68-o3251-Isup2.hkl (98KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204425X/rk2376Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O2i 0.84 (1) 1.90 (1) 2.733 (3) 173 (5)
O2—H2O′⋯O3 0.84 (1) 1.94 (2) 2.690 (2) 148 (2)
O3—H3O′⋯O2 0.84 (1) 1.97 (4) 2.690 (2) 143 (5)
O3—H3O⋯O3ii 0.83 (1) 1.88 (2) 2.697 (3) 168 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The project was supported by the 985 Project (grant Nos. MUC98504-14, MUC98507-08), Minzu University of China, together with the ‘Programme of Introducing Talents of Discipline to Universities’ (grant No. B08044), and the ‘Project for Scientific and Technical Achievements in Industrialization’, Beijing Education Commission.

supplementary crystallographic information

Comment

Carpesium triste Maxim grows in the northeast and southwest area of mainland China. It is used as traditional Chinese medicine having effects on detoxification and antibacterial activities. As a part of our research on biological resource by ethnic minorities in Guizhou province, the title compound was isolated form Carpesium triste Maxim. Its structure was identified by NMR spectra data and compared with the previous reports (Masao & Fumiko, 1975). Herewith we present its molecular structure. The molecule of the title compound contains a three-ring system A/B/C (Fig. 1). Ring A and B are both in chair conformations and there is a trans-junction between ring A (C1-C5/C10) and ring B (C5-C7/C8-C10). Furthermore, the methyl group at C14 sites is in the opposite orientation with the two hydroxyl groups at C1 and C3 sites. The furan ring C (C8-C12/O1) is in an envelope-like conformation. Two hydroxy groups contribute to the formation of intra- and inter-molecular O–H···O hydrogen bonds (Table 1). The latter ones link molecules into chain propagated in direction [0 1 0].

Experimental

The air-dried whole plant of Carpesium triste Maxim (0.337 kg) were pulverized and extracted three times with CH3OH (each for less than 1 minutes) at room temperature by flash-type extractor. The extract was concentrated to give a residue (33.5 g), which was further separated by CC (SiO2, 200-300 mesh, petroleum ether/acetone (25:1, 20:1, 15:1, 10:1, 8:1, 5:1, 3:1, 2:1, 1:1(v/v)) to yield 9 fractions: Fr. 1-9. Each fraction was examined by TLC and combined to afford many subfractions. Fr. 5 (270 mg) was subjected to Sephadex LH-20 (CHCl3/CH3OH 1:1) to provide the title compound (4 mg). 1H and 13C NMR spectral data of this compound was recorded on Bruker-AV-500 spectrometer, using CDCl3 as solvent and Me4Si as internal standard. The relative stereochemistry can be observed by X-ray diffraction experiment.

Refinement

The hydrogen atoms which bonded with C were placed in calculated positions with C–H = 0.95-1.00Å. The hydroxyl H atoms were located in Fourier difference map. The H atoms in these droups are splitted with s.o.f. = 0.5. The positions of hydroxyl H atoms were refined freely. All H atoms were refined with Uiso(H) = 1.2Ueq(C, O).

Figures

Fig. 1.

Fig. 1.

View of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. In the both hydroxy groups only one H atom is presented.

Crystal data

C15H20O4 Dx = 1.342 Mg m3
Mr = 264.31 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212 Cell parameters from 4658 reflections
Hall symbol: P 4abw 2nw θ = 3.2–27.9°
a = 6.4737 (4) Å µ = 0.10 mm1
c = 62.438 (8) Å T = 133 K
V = 2616.7 (5) Å3 Block, colourless
Z = 8 0.54 × 0.48 × 0.32 mm
F(000) = 1136

Data collection

Rigaku AFC10/Saturn-724+ CCD diffractometer 1826 reflections with I > 2σ(I)
Radiation source: Rotating Anode Rint = 0.058
Graphite monochromator θmax = 27.9°, θmin = 2.6°
Detector resolution: 28.5714 pixels mm-1 h = −8→8
φ– and ω–scans k = −8→8
19607 measured reflections l = −82→82
1990 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.316P] where P = (Fo2 + 2Fc2)/3
1990 reflections (Δ/σ)max = 0.001
185 parameters Δρmax = 0.23 e Å3
6 restraints Δρmin = −0.21 e Å3

Special details

Experimental. Since the skeleton methyl groups in eudesmanolide are biogenic 8a position, we draw the relative stereochemistry of the title eudesmanolide, by reference to the structures of related eudesmanolide in (Masao & Fumiko, 1975) although the absolute configuration could not be reliably determined from anomalous dispersion effects, if Mo radiation is used in experiment. Furthermore, the relative stereochemistry in the title compound was confirmed by NMR data. 13C NMR (125 MHz, CDCl3, δ,p.p.m.): 178.1 (C12), 149.2 (C4), 141.4 (C11), 120.5 (C13), 110.9 (C15), 77.6 (C8), 75.2 (C3), 74.7 (C1), 63.8 (C10), 40.3 (C7), 33.9 (C5), 33.6 (C9), 33.5 (C2), 26.8 (C6), 17.7 (C14).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.6749 (2) 0.7974 (2) 0.09621 (2) 0.0238 (3)
O2 0.9609 (2) 0.7729 (3) 0.01700 (2) 0.0259 (4)
H2O 0.903 (5) 0.820 (6) 0.0061 (5) 0.031* 0.50
H2O' 1.080 (3) 0.727 (4) 0.0149 (8) 0.031* 0.50
O3 1.2633 (3) 0.4894 (3) 0.01385 (3) 0.0277 (4)
H3O 1.329 (7) 0.432 (8) 0.0040 (7) 0.033* 0.50
H3O' 1.216 (8) 0.609 (4) 0.0132 (9) 0.033* 0.50
O4 0.6433 (3) 0.7218 (3) 0.13102 (3) 0.0289 (4)
C1 0.8323 (3) 0.6114 (3) 0.02599 (3) 0.0222 (4)
H1 0.6856 0.6382 0.0218 0.027*
C2 0.8995 (3) 0.4040 (4) 0.01641 (3) 0.0252 (5)
H2A 0.8023 0.2947 0.0210 0.030*
H2B 0.8947 0.4124 0.0006 0.030*
C3 1.1183 (3) 0.3474 (3) 0.02353 (3) 0.0230 (4)
H3 1.1504 0.2041 0.0186 0.028*
C4 1.1394 (3) 0.3561 (3) 0.04749 (3) 0.0188 (4)
C5 1.0717 (3) 0.5576 (3) 0.05753 (3) 0.0176 (4)
H5 1.1636 0.6681 0.0517 0.021*
C6 1.0932 (3) 0.5634 (3) 0.08181 (3) 0.0197 (4)
H6A 1.2369 0.5273 0.0857 0.024*
H6B 1.0010 0.4578 0.0881 0.024*
C7 1.0399 (3) 0.7753 (3) 0.09141 (3) 0.0199 (4)
H7 1.1590 0.8724 0.0898 0.024*
C8 0.8417 (3) 0.8722 (3) 0.08222 (3) 0.0206 (4)
H8 0.8518 1.0254 0.0840 0.025*
C9 0.7925 (3) 0.8280 (3) 0.05891 (3) 0.0208 (4)
H9A 0.8663 0.9307 0.0500 0.025*
H9B 0.6427 0.8502 0.0567 0.025*
C10 0.8472 (3) 0.6116 (3) 0.05061 (3) 0.0196 (4)
C11 0.9826 (3) 0.7535 (3) 0.11464 (3) 0.0221 (4)
C12 0.7532 (3) 0.7548 (3) 0.11580 (3) 0.0217 (4)
C13 1.1009 (4) 0.7239 (4) 0.13160 (3) 0.0287 (5)
H13A 1.0399 0.7022 0.1453 0.034*
H13B 1.2470 0.7243 0.1301 0.034*
C14 0.6907 (3) 0.4523 (3) 0.05931 (4) 0.0235 (5)
H14A 0.6728 0.4728 0.0747 0.028*
H14B 0.7424 0.3124 0.0566 0.028*
H14C 0.5577 0.4707 0.0521 0.028*
C15 1.2136 (3) 0.1949 (3) 0.05820 (4) 0.0253 (5)
H15A 1.2536 0.0735 0.0507 0.030*
H15B 1.2267 0.2010 0.0733 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0227 (8) 0.0298 (8) 0.0189 (7) 0.0009 (6) 0.0021 (6) 0.0013 (6)
O2 0.0313 (9) 0.0272 (8) 0.0192 (8) −0.0013 (7) 0.0007 (6) 0.0057 (6)
O3 0.0311 (9) 0.0287 (8) 0.0232 (8) −0.0024 (7) 0.0085 (7) 0.0027 (7)
O4 0.0321 (9) 0.0319 (8) 0.0228 (8) 0.0021 (7) 0.0073 (7) 0.0024 (7)
C1 0.0221 (10) 0.0250 (10) 0.0196 (10) −0.0023 (8) −0.0023 (8) 0.0024 (8)
C2 0.0281 (11) 0.0314 (12) 0.0161 (10) −0.0054 (9) −0.0024 (8) −0.0028 (9)
C3 0.0272 (11) 0.0210 (10) 0.0208 (10) −0.0026 (8) 0.0038 (9) −0.0021 (8)
C4 0.0183 (9) 0.0207 (9) 0.0173 (10) −0.0031 (7) 0.0014 (8) −0.0015 (8)
C5 0.0182 (9) 0.0187 (10) 0.0158 (9) −0.0015 (7) −0.0012 (7) −0.0003 (8)
C6 0.0215 (10) 0.0211 (10) 0.0164 (9) 0.0004 (8) −0.0008 (8) 0.0014 (8)
C7 0.0213 (10) 0.0212 (10) 0.0171 (9) −0.0017 (8) −0.0012 (8) 0.0010 (8)
C8 0.0241 (10) 0.0198 (9) 0.0178 (10) −0.0008 (8) 0.0015 (8) 0.0009 (8)
C9 0.0222 (10) 0.0212 (10) 0.0190 (10) 0.0024 (8) −0.0002 (8) 0.0025 (8)
C10 0.0183 (9) 0.0234 (10) 0.0169 (10) −0.0012 (8) −0.0011 (8) 0.0017 (8)
C11 0.0265 (10) 0.0202 (10) 0.0197 (10) −0.0004 (8) 0.0014 (8) −0.0010 (8)
C12 0.0282 (11) 0.0201 (10) 0.0169 (9) 0.0007 (8) 0.0015 (8) −0.0007 (8)
C13 0.0318 (12) 0.0360 (12) 0.0182 (10) −0.0009 (10) −0.0014 (9) 0.0003 (9)
C14 0.0203 (10) 0.0257 (11) 0.0245 (10) −0.0056 (8) 0.0015 (8) 0.0005 (9)
C15 0.0256 (10) 0.0246 (11) 0.0255 (11) −0.0009 (8) 0.0008 (9) −0.0012 (8)

Geometric parameters (Å, º)

O1—C12 1.353 (3) C6—C7 1.536 (3)
O1—C8 1.471 (2) C6—H6A 0.9900
O2—C1 1.449 (3) C6—H6B 0.9900
O2—H2O 0.840 (10) C7—C11 1.504 (3)
O2—H2O' 0.839 (10) C7—C8 1.539 (3)
O3—C3 1.447 (3) C7—H7 1.0000
O3—H3O 0.834 (10) C8—C9 1.517 (3)
O3—H3O' 0.836 (10) C8—H8 1.0000
O4—C12 1.206 (3) C9—C10 1.535 (3)
C1—C2 1.533 (3) C9—H9A 0.9900
C1—C10 1.540 (3) C9—H9B 0.9900
C1—H1 1.0000 C10—C14 1.544 (3)
C2—C3 1.529 (3) C11—C13 1.321 (3)
C2—H2A 0.9900 C11—C12 1.486 (3)
C2—H2B 0.9900 C13—H13A 0.9500
C3—C4 1.503 (3) C13—H13B 0.9500
C3—H3 1.0000 C14—H14A 0.9800
C4—C15 1.330 (3) C14—H14B 0.9800
C4—C5 1.512 (3) C14—H14C 0.9800
C5—C6 1.523 (3) C15—H15A 0.9500
C5—C10 1.556 (3) C15—H15B 0.9500
C5—H5 1.0000
C12—O1—C8 109.21 (16) C11—C7—C8 101.06 (17)
C1—O2—H2O 108.7 (12) C6—C7—C8 113.93 (16)
C1—O2—H2O' 109.6 (12) C11—C7—H7 110.4
H2O—O2—H2O' 115 (5) C6—C7—H7 110.4
C3—O3—H3O 111 (4) C8—C7—H7 110.4
C3—O3—H3O' 112 (4) O1—C8—C9 110.70 (17)
H3O—O3—H3O' 124 (6) O1—C8—C7 104.87 (15)
O2—C1—C2 108.53 (17) C9—C8—C7 117.13 (17)
O2—C1—C10 110.48 (16) O1—C8—H8 107.9
C2—C1—C10 111.86 (17) C9—C8—H8 107.9
O2—C1—H1 108.6 C7—C8—H8 107.9
C2—C1—H1 108.6 C8—C9—C10 116.56 (16)
C10—C1—H1 108.6 C8—C9—H9A 108.2
C3—C2—C1 111.05 (17) C10—C9—H9A 108.2
C3—C2—H2A 109.4 C8—C9—H9B 108.2
C1—C2—H2A 109.4 C10—C9—H9B 108.2
C3—C2—H2B 109.4 H9A—C9—H9B 107.3
C1—C2—H2B 109.4 C9—C10—C1 108.84 (16)
H2A—C2—H2B 108.0 C9—C10—C14 109.84 (17)
O3—C3—C4 109.47 (17) C1—C10—C14 108.02 (16)
O3—C3—C2 109.10 (17) C9—C10—C5 109.08 (16)
C4—C3—C2 111.38 (17) C1—C10—C5 109.60 (16)
O3—C3—H3 108.9 C14—C10—C5 111.41 (17)
C4—C3—H3 108.9 C13—C11—C12 122.7 (2)
C2—C3—H3 108.9 C13—C11—C7 130.1 (2)
C15—C4—C3 120.26 (19) C12—C11—C7 107.06 (18)
C15—C4—C5 124.99 (19) O4—C12—O1 121.8 (2)
C3—C4—C5 114.75 (17) O4—C12—C11 128.8 (2)
C4—C5—C6 114.06 (17) O1—C12—C11 109.35 (17)
C4—C5—C10 110.44 (16) C11—C13—H13A 120.0
C6—C5—C10 110.86 (16) C11—C13—H13B 120.0
C4—C5—H5 107.0 H13A—C13—H13B 120.0
C6—C5—H5 107.0 C10—C14—H14A 109.5
C10—C5—H5 107.0 C10—C14—H14B 109.5
C5—C6—C7 112.94 (16) H14A—C14—H14B 109.5
C5—C6—H6A 109.0 C10—C14—H14C 109.5
C7—C6—H6A 109.0 H14A—C14—H14C 109.5
C5—C6—H6B 109.0 H14B—C14—H14C 109.5
C7—C6—H6B 109.0 C4—C15—H15A 120.0
H6A—C6—H6B 107.8 C4—C15—H15B 120.0
C11—C7—C6 110.34 (17) H15A—C15—H15B 120.0
O2—C1—C2—C3 65.9 (2) C8—C9—C10—C14 74.5 (2)
C10—C1—C2—C3 −56.2 (2) C8—C9—C10—C5 −47.9 (2)
C1—C2—C3—O3 −68.2 (2) O2—C1—C10—C9 55.0 (2)
C1—C2—C3—C4 52.7 (2) C2—C1—C10—C9 176.05 (17)
O3—C3—C4—C15 −112.1 (2) O2—C1—C10—C14 174.25 (17)
C2—C3—C4—C15 127.1 (2) C2—C1—C10—C14 −64.7 (2)
O3—C3—C4—C5 67.6 (2) O2—C1—C10—C5 −64.2 (2)
C2—C3—C4—C5 −53.2 (2) C2—C1—C10—C5 56.8 (2)
C15—C4—C5—C6 −0.6 (3) C4—C5—C10—C9 −173.51 (16)
C3—C4—C5—C6 179.74 (17) C6—C5—C10—C9 59.1 (2)
C15—C4—C5—C10 −126.2 (2) C4—C5—C10—C1 −54.4 (2)
C3—C4—C5—C10 54.1 (2) C6—C5—C10—C1 178.14 (16)
C4—C5—C6—C7 175.41 (16) C4—C5—C10—C14 65.1 (2)
C10—C5—C6—C7 −59.2 (2) C6—C5—C10—C14 −62.4 (2)
C5—C6—C7—C11 157.85 (17) C6—C7—C11—C13 76.2 (3)
C5—C6—C7—C8 45.0 (2) C8—C7—C11—C13 −162.9 (2)
C12—O1—C8—C9 153.66 (17) C6—C7—C11—C12 −99.4 (2)
C12—O1—C8—C7 26.4 (2) C8—C7—C11—C12 21.5 (2)
C11—C7—C8—O1 −28.42 (19) C8—O1—C12—O4 168.33 (19)
C6—C7—C8—O1 89.89 (19) C8—O1—C12—C11 −12.6 (2)
C11—C7—C8—C9 −151.58 (17) C13—C11—C12—O4 −3.7 (4)
C6—C7—C8—C9 −33.3 (2) C7—C11—C12—O4 172.3 (2)
O1—C8—C9—C10 −83.9 (2) C13—C11—C12—O1 177.4 (2)
C7—C8—C9—C10 36.2 (3) C7—C11—C12—O1 −6.6 (2)
C8—C9—C10—C1 −167.46 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O2i 0.84 (1) 1.90 (1) 2.733 (3) 173 (5)
O2—H2O′···O3 0.84 (1) 1.94 (2) 2.690 (2) 148 (2)
O3—H3O′···O2 0.84 (1) 1.97 (4) 2.690 (2) 143 (5)
O3—H3O···O3ii 0.83 (1) 1.88 (2) 2.697 (3) 168 (6)

Symmetry codes: (i) y, x, −z; (ii) y+1, x−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2376).

References

  1. Masao, M. & Fumiko, S. (1975). Phytochemistry, 14, 2247–2248.
  2. Rigaku/MSC (2008). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204425X/rk2376sup1.cif

e-68-o3251-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204425X/rk2376Isup2.hkl

e-68-o3251-Isup2.hkl (98KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204425X/rk2376Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES