Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 31;68(Pt 11):o3252. doi: 10.1107/S1600536812044261

10′-Chloro-3′,4′-dihydro-2′H-spiro­[cyclo­propane-1,7′(6′H)-pyrimido[2,1-a]isoquinolin]-6′-one

Kensuke Okuda a,*, Takashi Hirota b, Yuta Nishina c, Hiroyuki Ishida d,*
PMCID: PMC3515329  PMID: 23284549

Abstract

In the title compound, C14H13ClN2O, the fused hydro­pyrimidine ring adopts an envelope conformation with one of the methyl­ene C atoms at the flap. The three-membered ring is approximately perpendicular to the attached isoquinoline ring system, with a dihedral angle of 89.44 (11)°. In the crystal, mol­ecules are linked by a weak C—H⋯π inter­action, forming a helical chain along the c axis.

Related literature  

For recent reports on the development of complex heterocyclic skeletons for potential pharmaceutics in one step using the Truce–Smiles rearrangement, see: Okuda et al. (2010, 2011). For the synthesis of the title compound, see: Okuda et al. (2012).graphic file with name e-68-o3252-scheme1.jpg

Experimental  

Crystal data  

  • C14H13ClN2O

  • M r = 260.72

  • Orthorhombic, Inline graphic

  • a = 8.8746 (5) Å

  • b = 13.3273 (7) Å

  • c = 9.8331 (6) Å

  • V = 1163.01 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 180 K

  • 0.25 × 0.21 × 0.03 mm

Data collection  

  • Rigaku R-AXIS RAPIDII diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.931, T max = 0.991

  • 17373 measured reflections

  • 3359 independent reflections

  • 3095 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.079

  • S = 1.05

  • 3359 reflections

  • 163 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983), 1571 Friedel pairs

  • Flack parameter: 0.01 (5)

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044261/ff2085sup1.cif

e-68-o3252-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044261/ff2085Isup2.hkl

e-68-o3252-Isup2.hkl (164.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1/N1/C2–C4/C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12BCg1i 0.99 2.72 3.6000 (15) 148

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As an extension of our work to develop complex heterocyclic skeletons as leads for potential pharmaceutical agents (Okuda et al., 2011), we found that tricyclic 5-amino-1,2-dihydrofuro[2,3-c]isoquinolines (Okuda et al., 2010), easily accessible by a one step base-induced Truce-Smiles rearrangement of 2-(3-cyanopropoxy)benzonitriles, showed bronchodilator activity (unpublished results). In the pursuit of more potent analogs, we have explored preparation of additional new ring-fused tetracyclic heterocycles. Herein we report that reaction of 5-amino-7-chloro-1,2-dihydrofuro[2,3-c]isoquinoline with 1,3-dibromopropane in the presence of calcium oxide afforded the title compound (Okuda et al., 2012) via rearrangement instead of the anticipated 10-chloro-2,3,6,7-tetrahydrofuro[2,3-c]imidazo[2,1-a]isoquinoline.

In the title compound, the fused hydropyrimidine N1/C1/N2/C12–C14 ring adopts an envelope conformation with atom C13 at the flap. The isoquinoline C1/N1/C2–C9 ring system is planar with an r.m.s. deviation of 0.044 (1) Å. The three-membered C3/C10/C11 ring is approximately perpendicular to the attached isoquinoline ring system with a dihedral angle of 89.44 (11)°. In the crystal, molecules are linked by a weak C—H···π interaction (Table 1), forming a helical chain along the c axis.

Experimental

The detailed experimental procedure for the synthesis of 10'-chloro-3',4'-dihydro-2'H-spiro[cyclopropane-1,7'(6'H)-pyrimido[2,1-a]isoquinolin]-6'-one (m.p. 424–425 K from n-hexane) from 5-amino-7-chloro-1,2-dihydrofuro[2,3-c]isoquinoline was described in our previous paper (Okuda et al., 2012). Single crystals suitable for X-ray diffraction were obtained from an acetonitrile/water solution. The title compound was dissolved in hot acetonitrile, then water was added dropwise until the solution became turbid. Slow evaporation at room temperature gave the colourless crystals

Refinement

H atoms were located in a difference Fourier map and then were positioned geometrically (C—H = 0.95 or 0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound, showing a chain structure formed by C—H···π interactions (dashed lines).

Crystal data

C14H13ClN2O F(000) = 544.00
Mr = 260.72 Dx = 1.489 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2ac Cell parameters from 15021 reflections
a = 8.8746 (5) Å θ = 3.1–30.0°
b = 13.3273 (7) Å µ = 0.32 mm1
c = 9.8331 (6) Å T = 180 K
V = 1163.01 (11) Å3 Platelet, colourless
Z = 4 0.25 × 0.21 × 0.03 mm

Data collection

Rigaku R-AXIS RAPIDII diffractometer 3095 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.027
ω scans θmax = 30.0°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −12→12
Tmin = 0.931, Tmax = 0.991 k = −18→18
17373 measured reflections l = −13→13
3359 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1225P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3359 reflections Δρmax = 0.32 e Å3
163 parameters Δρmin = −0.15 e Å3
1 restraint Absolute structure: Flack (1983), 1571 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.55266 (4) 0.63700 (2) 0.30542 (5) 0.03531 (10)
O1 0.57503 (12) 0.04186 (7) 0.43848 (12) 0.0307 (2)
N1 0.45976 (11) 0.15982 (7) 0.31067 (13) 0.01989 (19)
N2 0.36794 (13) 0.28236 (8) 0.15502 (12) 0.0249 (2)
C1 0.44659 (13) 0.25802 (10) 0.25827 (13) 0.0189 (2)
C2 0.56200 (15) 0.13087 (10) 0.40789 (14) 0.0211 (2)
C3 0.65462 (14) 0.20982 (9) 0.47518 (13) 0.0205 (2)
C4 0.63116 (14) 0.31618 (9) 0.43507 (12) 0.0191 (2)
C5 0.70816 (15) 0.39510 (11) 0.49866 (14) 0.0259 (3)
H5 0.7774 0.3806 0.5697 0.031*
C6 0.68510 (16) 0.49385 (10) 0.45973 (15) 0.0260 (3)
H6 0.7372 0.5470 0.5038 0.031*
C7 0.58418 (16) 0.51363 (10) 0.35496 (15) 0.0242 (3)
C8 0.50749 (14) 0.43794 (9) 0.28990 (14) 0.0226 (2)
H8 0.4391 0.4531 0.2185 0.027*
C9 0.53128 (13) 0.33791 (9) 0.33006 (13) 0.0187 (2)
C10 0.81354 (17) 0.17547 (12) 0.51350 (16) 0.0301 (3)
H10A 0.8443 0.1069 0.4865 0.036*
H10B 0.8952 0.2260 0.5108 0.036*
C11 0.69779 (19) 0.18535 (11) 0.62195 (15) 0.0293 (3)
H11A 0.7079 0.2420 0.6864 0.035*
H11B 0.6570 0.1229 0.6621 0.035*
C12 0.27594 (16) 0.20671 (11) 0.08694 (15) 0.0297 (3)
H12A 0.3328 0.1794 0.0086 0.036*
H12B 0.1836 0.2390 0.0513 0.036*
C13 0.23159 (15) 0.12115 (11) 0.17992 (16) 0.0289 (3)
H13A 0.1610 0.1456 0.2505 0.035*
H13B 0.1802 0.0681 0.1268 0.035*
C14 0.37139 (16) 0.07873 (10) 0.24647 (16) 0.0267 (3)
H14A 0.3421 0.0288 0.3162 0.032*
H14B 0.4338 0.0443 0.1773 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.04450 (18) 0.01793 (13) 0.0435 (2) −0.00198 (13) 0.00151 (18) 0.00384 (15)
O1 0.0391 (5) 0.0195 (5) 0.0334 (6) −0.0010 (4) −0.0080 (5) 0.0010 (4)
N1 0.0222 (4) 0.0189 (4) 0.0186 (5) −0.0024 (3) −0.0003 (4) −0.0022 (5)
N2 0.0257 (5) 0.0269 (5) 0.0221 (5) −0.0025 (4) −0.0051 (4) 0.0002 (4)
C1 0.0193 (5) 0.0197 (5) 0.0177 (5) 0.0001 (4) 0.0020 (4) −0.0015 (4)
C2 0.0244 (5) 0.0197 (6) 0.0190 (6) −0.0007 (4) 0.0012 (4) 0.0000 (4)
C3 0.0227 (5) 0.0201 (5) 0.0187 (5) −0.0006 (4) −0.0026 (4) −0.0005 (4)
C4 0.0205 (5) 0.0185 (5) 0.0184 (5) −0.0011 (4) 0.0005 (4) −0.0012 (4)
C5 0.0280 (6) 0.0252 (6) 0.0245 (6) −0.0031 (5) −0.0051 (5) −0.0013 (5)
C6 0.0295 (6) 0.0215 (6) 0.0270 (7) −0.0065 (5) 0.0022 (5) −0.0046 (5)
C7 0.0279 (6) 0.0176 (5) 0.0272 (6) −0.0009 (5) 0.0069 (5) 0.0009 (5)
C8 0.0239 (5) 0.0209 (5) 0.0231 (6) 0.0005 (4) 0.0005 (5) 0.0008 (5)
C9 0.0193 (5) 0.0194 (5) 0.0174 (6) −0.0005 (4) 0.0020 (4) −0.0013 (4)
C10 0.0273 (7) 0.0278 (7) 0.0351 (8) 0.0024 (6) −0.0106 (6) −0.0001 (6)
C11 0.0407 (8) 0.0257 (6) 0.0214 (6) −0.0004 (6) −0.0089 (6) 0.0032 (5)
C12 0.0302 (7) 0.0331 (7) 0.0259 (7) −0.0057 (6) −0.0092 (6) −0.0028 (5)
C13 0.0256 (6) 0.0330 (7) 0.0281 (7) −0.0072 (5) −0.0040 (5) −0.0051 (6)
C14 0.0321 (6) 0.0200 (6) 0.0282 (6) −0.0051 (5) −0.0052 (5) −0.0039 (5)

Geometric parameters (Å, º)

Cl1—C7 1.7376 (14) C6—H6 0.9500
O1—C2 1.2292 (16) C7—C8 1.3748 (19)
N1—C2 1.3733 (17) C8—C9 1.4063 (17)
N1—C1 1.4113 (16) C8—H8 0.9500
N1—C14 1.4769 (16) C10—C11 1.486 (2)
N2—C1 1.2740 (17) C10—H10A 0.9900
N2—C12 1.4599 (17) C10—H10B 0.9900
C1—C9 1.4822 (17) C11—H11A 0.9900
C2—C3 1.4902 (18) C11—H11B 0.9900
C3—C4 1.4859 (17) C12—C13 1.514 (2)
C3—C11 1.5284 (19) C12—H12A 0.9900
C3—C10 1.5299 (19) C12—H12B 0.9900
C4—C9 1.3913 (17) C13—C14 1.512 (2)
C4—C5 1.4015 (18) C13—H13A 0.9900
C5—C6 1.3859 (19) C13—H13B 0.9900
C5—H5 0.9500 C14—H14A 0.9900
C6—C7 1.390 (2) C14—H14B 0.9900
C2—N1—C1 124.71 (10) C4—C9—C1 121.81 (11)
C2—N1—C14 116.28 (10) C8—C9—C1 118.10 (11)
C1—N1—C14 118.59 (11) C11—C10—C3 60.87 (9)
C1—N2—C12 119.73 (12) C11—C10—H10A 117.7
N2—C1—N1 124.92 (12) C3—C10—H10A 117.7
N2—C1—C9 118.32 (12) C11—C10—H10B 117.7
N1—C1—C9 116.76 (11) C3—C10—H10B 117.7
O1—C2—N1 120.24 (12) H10A—C10—H10B 114.8
O1—C2—C3 121.39 (12) C10—C11—C3 60.97 (9)
N1—C2—C3 118.37 (11) C10—C11—H11A 117.7
C4—C3—C2 118.58 (11) C3—C11—H11A 117.7
C4—C3—C11 119.30 (11) C10—C11—H11B 117.7
C2—C3—C11 114.01 (11) C3—C11—H11B 117.7
C4—C3—C10 118.68 (11) H11A—C11—H11B 114.8
C2—C3—C10 113.99 (11) N2—C12—C13 112.88 (12)
C11—C3—C10 58.16 (9) N2—C12—H12A 109.0
C9—C4—C5 119.05 (11) C13—C12—H12A 109.0
C9—C4—C3 119.00 (11) N2—C12—H12B 109.0
C5—C4—C3 121.94 (11) C13—C12—H12B 109.0
C6—C5—C4 121.16 (12) H12A—C12—H12B 107.8
C6—C5—H5 119.4 C14—C13—C12 109.24 (11)
C4—C5—H5 119.4 C14—C13—H13A 109.8
C5—C6—C7 118.68 (12) C12—C13—H13A 109.8
C5—C6—H6 120.7 C14—C13—H13B 109.8
C7—C6—H6 120.7 C12—C13—H13B 109.8
C8—C7—C6 121.64 (12) H13A—C13—H13B 108.3
C8—C7—Cl1 118.96 (11) N1—C14—C13 110.31 (11)
C6—C7—Cl1 119.40 (10) N1—C14—H14A 109.6
C7—C8—C9 119.38 (12) C13—C14—H14A 109.6
C7—C8—H8 120.3 N1—C14—H14B 109.6
C9—C8—H8 120.3 C13—C14—H14B 109.6
C4—C9—C8 120.09 (11) H14A—C14—H14B 108.1
C12—N2—C1—N1 3.66 (19) C4—C5—C6—C7 −0.4 (2)
C12—N2—C1—C9 −176.29 (11) C5—C6—C7—C8 0.0 (2)
C2—N1—C1—N2 169.27 (13) C5—C6—C7—Cl1 179.55 (11)
C14—N1—C1—N2 −2.93 (19) C6—C7—C8—C9 0.1 (2)
C2—N1—C1—C9 −10.78 (18) Cl1—C7—C8—C9 −179.46 (10)
C14—N1—C1—C9 177.02 (11) C5—C4—C9—C8 −0.63 (18)
C1—N1—C2—O1 −173.21 (13) C3—C4—C9—C8 −179.79 (11)
C14—N1—C2—O1 −0.84 (19) C5—C4—C9—C1 179.82 (11)
C1—N1—C2—C3 7.29 (19) C3—C4—C9—C1 0.66 (17)
C14—N1—C2—C3 179.66 (12) C7—C8—C9—C4 0.24 (18)
O1—C2—C3—C4 −178.91 (12) C7—C8—C9—C1 179.81 (11)
N1—C2—C3—C4 0.58 (18) N2—C1—C9—C4 −173.56 (12)
O1—C2—C3—C11 −30.41 (18) N1—C1—C9—C4 6.49 (17)
N1—C2—C3—C11 149.08 (13) N2—C1—C9—C8 6.88 (17)
O1—C2—C3—C10 33.87 (19) N1—C1—C9—C8 −173.07 (11)
N1—C2—C3—C10 −146.63 (13) C4—C3—C10—C11 108.47 (14)
C2—C3—C4—C9 −4.26 (17) C2—C3—C10—C11 −104.35 (13)
C11—C3—C4—C9 −151.08 (12) C4—C3—C11—C10 −107.42 (14)
C10—C3—C4—C9 141.41 (12) C2—C3—C11—C10 104.32 (13)
C2—C3—C4—C5 176.60 (12) C1—N2—C12—C13 25.27 (18)
C11—C3—C4—C5 29.78 (18) N2—C12—C13—C14 −52.69 (16)
C10—C3—C4—C5 −37.73 (18) C2—N1—C14—C13 160.89 (12)
C9—C4—C5—C6 0.73 (19) C1—N1—C14—C13 −26.25 (17)
C3—C4—C5—C6 179.87 (13) C12—C13—C14—N1 51.96 (16)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1/N1/C2–C4/C9 ring.

D—H···A D—H H···A D···A D—H···A
C12—H12B···Cg1i 0.99 2.72 3.6000 (15) 148

Symmetry code: (i) −x+1/2, y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2085).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Okuda, K., Takechi, H., Hirota, T. & Sasaki, K. (2011). Heterocycles, 83, 1315–1328.
  5. Okuda, K., Yoshida, M., Hirota, T. & Sasaki, K. (2010). Chem. Pharm. Bull. 58, 363–368. [DOI] [PubMed]
  6. Okuda, K., Yoshida, M., Hirota, T. & Sasaki, K. (2012). Synth. Commun. 42, 865–871.
  7. Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044261/ff2085sup1.cif

e-68-o3252-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044261/ff2085Isup2.hkl

e-68-o3252-Isup2.hkl (164.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES