Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1981 Jun;32(3):1051–1057. doi: 10.1128/iai.32.3.1051-1057.1981

Immune reactivity of the purified hemagglutinin of measles virus.

W J Bellini, D E McFarlin, G D Silver, E S Mingioli, H F McFarland
PMCID: PMC351557  PMID: 6166563

Abstract

The role of the immune response to measles virus in acute infection or in disease states associated with this virus is of major interest. The viral genome-specified surface antigens of measles, the hemagglutinin and fusion proteins, are likely to be of paramount importance with respect to the host immune response to the virus. This report describes initial studies aimed at assessing the immune response to the major surface glycoprotein, the hemagglutinin. This antigen was purified by affinity chromatography, using a monoclonal anti-hemagglutinin immobilized on Sepharose. The purified protein retained biological activity in hemagglutination assays. This activity could be specifically inhibited with a human antimeasles serum and with monoclonal antibody to the hemagglutinin. Lymphocytes from individuals known to proliferate to measles-infected monolayers also proliferated to the purified hemagglutinin. Thus, the immune-response to measles virus is, in part, directed to this surface antigen.

Full text

PDF
1051

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axén R., Porath J., Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967 Jun 24;214(5095):1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
  2. Bellini W. J., Trudgett A., McFarlin D. E. Purification of measles virus with preservation of infectivity and antigenicity. J Gen Virol. 1979 Jun;43(3):633–639. doi: 10.1099/0022-1317-43-3-633. [DOI] [PubMed] [Google Scholar]
  3. Ehrnst A., Weiner L., Norrby E. Fluctuations and distribution of measles virus antigens in chronically infected cells. Nature. 1974 Apr 19;248(5450):691–693. doi: 10.1038/248691a0. [DOI] [PubMed] [Google Scholar]
  4. Glorioso J. C., Smith J. W. Immune interactions with cells infected with herpes simplex virus: antibodies to radioiodinated surface antigens. J Immunol. 1977 Jan;118(1):114–121. [PubMed] [Google Scholar]
  5. Hall W. W., Lamb R. A., Choppin P. W. Measles and subacute sclerosing panencephalitis virus proteins: lack of antibodies to the M protein in patients with subacute sclerosing panencephalitis. Proc Natl Acad Sci U S A. 1979 Apr;76(4):2047–2051. doi: 10.1073/pnas.76.4.2047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Horta-Barbosa L., Fuccillo D. A., Sever J. L., Zeman W. Subacute sclerosing panencephalitis: isolation of measles virus from a brain biopsy. Nature. 1969 Mar 8;221(5184):974–974. doi: 10.1038/221974a0. [DOI] [PubMed] [Google Scholar]
  7. Knipe D. M., Baltimore D., Lodish H. F. Separate pathways of maturation of the major structural proteins of vesicular stomatitis virus. J Virol. 1977 Mar;21(3):1128–1139. doi: 10.1128/jvi.21.3.1128-1139.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lamb R. A., Etkind P. R., Choppin P. W. Evidence for a ninth influenza viral polypeptide. Virology. 1978 Nov;91(1):60–78. doi: 10.1016/0042-6822(78)90355-0. [DOI] [PubMed] [Google Scholar]
  10. Laver W. G., Valentine R. C. Morphology of the isolated hemagglutinin and neuraminidase subunits of influenza virus. Virology. 1969 May;38(1):105–119. doi: 10.1016/0042-6822(69)90132-9. [DOI] [PubMed] [Google Scholar]
  11. McFarland H. F., Pedone C. A., Mingioli E. S., McFarlin D. E. The response of human lymphocyte subpopulations to measles, mumps, and vaccinia viral antigens. J Immunol. 1980 Jul;125(1):221–225. [PubMed] [Google Scholar]
  12. McFarlin D. E., Bellini W. J., Mingioli E. S., Behar T. N., Trudgett A. Monospecific antibody to the haemagglutinin of measles virus. J Gen Virol. 1980 Jun;48(Pt 2):425–429. doi: 10.1099/0022-1317-48-2-425. [DOI] [PubMed] [Google Scholar]
  13. Mountcastle W. E., Choppin P. W. A comparison of the polypeptides of four measles virus strains. Virology. 1977 May 15;78(2):463–474. doi: 10.1016/0042-6822(77)90123-4. [DOI] [PubMed] [Google Scholar]
  14. Norrby E. Effect of sodium deoxycholate on biological activities of measles virus. Proc Soc Exp Biol Med. 1966 Mar;121(3):948–954. doi: 10.3181/00379727-121-30933. [DOI] [PubMed] [Google Scholar]
  15. Trudgett A., Bellini W. J., Mingioli E. S., McFarlin D. E. Antibodies to the structural polypeptides of measles virus following acute infection and in SSPE. Clin Exp Immunol. 1980 Mar;39(3):652–656. [PMC free article] [PubMed] [Google Scholar]
  16. Tyrrell D. L., Norrby E. Structural polypeptides of measles virus. J Gen Virol. 1978 May;39(2):219–229. doi: 10.1099/0022-1317-39-2-219. [DOI] [PubMed] [Google Scholar]
  17. Wechsler S. L., Weiner H. L., Fields B. N. Immune response in subacute sclerosing panencephalitis: reduced antibody response to the matrix protein of measles virus. J Immunol. 1979 Aug;123(2):884–889. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES