Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009 Apr 14;24(2):121–135. doi: 10.1007/s12250-009-3015-6

The role of the charged residues of the GP2 helical regions in Ebola entry

Haiqing Jiang 1, Jizhen Wang 1, Balaji Manicassamy 1, Santhakumar Manicassamy 1, Michael Caffrey 2, Lijun Rong 1,
PMCID: PMC3516429  NIHMSID: NIHMS101144  PMID: 23227032

Abstract

The glycoprotein (GP) of Ebola is the sole structural protein that forms the spikes on the viral envelope. The GP contains two subunits, GP1 and GP2, linked by a disulfide bond, which are responsible for receptor binding and membrane fusion, respectively. In this study, the full length of GP gene of Ebola Zaire species, 2028 base pairs in length, was synthesized using 38 overlapping oligonucleotides by multiple rounds of polymerase chain reaction (PCR). The synthesized GP gene was shown to be efficiently expressed in mammalian cells. Furthermore, an efficient HIV-based pseudotyping system was developed using the synthetic GP gene, providing a safe approach to dissecting the entry mechanism of Ebola viruses. Using this pseudotyping system and mutational analysis, the role of the charged residues in the GP2 helical regions was examined. It was found that substitutions of the most charged residues in the regions did not adversely affect GP expression, processing, or viral incorporation, however, most of the mutations greatly impaired the ability of GP to mediate efficient viral infection. These results demonstrate that these charged residues of GP2 play an important role in GP-mediated Ebola entry into its host cells. We propose that these charged residues are involved in forming the intermediate conformation(s) of GP in membrane fusion and Ebola entry.

Key words: Ebola virus, Glycoprotein GP1/GP2, Charged residues, Viral entry

Footnotes

Foundation items: The laboratory research was supported by National Institutes of Health grants CA 092459 and AI48056. L. R. was a recipient of the Schweppe Foundation Career Development Award.

References

  • 1.Bachelder R. E., Bilancieri J., Lin W., et al. A human recombinant Fab identifies a human immunodeficiency virus type 1-induced conformational change in cell surface-expressed CD4. J Virol. 1995;69:5734–5742. doi: 10.1128/jvi.69.9.5734-5742.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Baker K. A., Dutch R. E., Lamb R. A., et al. Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell. 1999;3:309–319. doi: 10.1016/S1097-2765(00)80458-X. [DOI] [PubMed] [Google Scholar]
  • 3.Bisht H., Roberts A., Vogel L., et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci USA. 2004;101:6641–6646. doi: 10.1073/pnas.0401939101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Brindley M. A., Hughes L., Ruiz A., et al. Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. J Virol. 2007;81:7702–7709. doi: 10.1128/JVI.02433-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Bullough P. A., Hughson F. M., Skehel J. J., et al. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994;371:37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
  • 6.Caffrey M. Model for the structure of the HIV gp41 ectodomain: insight into the intermolecular interactions of the gp41 loop. Biochim Biophys Acta. 2001;1536:116–122. doi: 10.1016/s0925-4439(01)00042-4. [DOI] [PubMed] [Google Scholar]
  • 7.Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993;73:823–832. doi: 10.1016/0092-8674(93)90260-W. [DOI] [PubMed] [Google Scholar]
  • 8.Colman P. M., Lawrence M. C. The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol. 2003;4:309–319. doi: 10.1038/nrm1076. [DOI] [PubMed] [Google Scholar]
  • 9.Connor R. I., Chen B. K., Choe S., et al. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology. 1995;206:935–944. doi: 10.1006/viro.1995.1016. [DOI] [PubMed] [Google Scholar]
  • 10.Fass D., Blacklow S. C., Kim P. S. Retrovirus envelope domain at 1.7A0 resolution. Nature Struct Biol. 1996;3:465–469. doi: 10.1038/nsb0596-465. [DOI] [PubMed] [Google Scholar]
  • 11.Gallaher W. R. Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses. Cell. 1996;85:477–478. doi: 10.1016/S0092-8674(00)81248-9. [DOI] [PubMed] [Google Scholar]
  • 12.Higginbottom A., Quinn E. R., Kuo C. C., et al. Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2 [In Process Citation] J Virol. 2000;74:3642–3649. doi: 10.1128/JVI.74.8.3642-3649.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jeffers S. A., Sanders D. A., Sanchez A. Covalent modifications of the ebola virus glycoprotein. J Virol. 2002;76:12463–12472. doi: 10.1128/JVI.76.24.12463-12472.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kao C. C., Yang X., Kline A., et al. Template Requirements for RNA Synthesis by a Recombinant Hepatitis C Virus RNA-Dependent RNA Polymerase. J Virol. 2000;74:11121–11128. doi: 10.1128/JVI.74.23.11121-11128.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kuhn J. H., Radoshitzky S. R., Guth A. C., et al. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem. 2006;281:15951–15958. doi: 10.1074/jbc.M601796200. [DOI] [PubMed] [Google Scholar]
  • 16.Lee J. E., Fusco M. L., Hessell A. J., et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 2008;454:177–182. doi: 10.1038/nature07082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Ma M., Kersten D. B., Kamrud K. I., et al. Murine leukemia virus pseudotypes of La Crosse and Hantaan Bunyaviruses: a system for analysis of cell tropism. Virus Res. 1999;64:23–32. doi: 10.1016/S0168-1702(99)00070-2. [DOI] [PubMed] [Google Scholar]
  • 18.Malashkevich V. N., Chan D. C., Chutkowski C. T., et al. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc Natl Acad Sci U S A. 1998;95:9134–9139. doi: 10.1073/pnas.95.16.9134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Malashkevich V. N., Schneider B. J., McNally M. L., et al. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. Proc Natl Acad Sci USA. 1999;96:2662–2667. doi: 10.1073/pnas.96.6.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Manicassamy B., Wang J., Jiang H., et al. Comprehensive Analysis of Ebola Virus GP1 in Viral Entry. J Virol. 2005;79:4793–4805. doi: 10.1128/JVI.79.8.4793-4805.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Manicassamy B., Wang J., Rumschlag E., et al. Characterization of Marburg virus glycoprotein in viral entry. Virology. 2007;358:79–88. doi: 10.1016/j.virol.2006.06.041. [DOI] [PubMed] [Google Scholar]
  • 22.Medina M. F., Kobinger G. P., Rux J., et al. Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol Ther. 2003;8:777–789. doi: 10.1016/j.ymthe.2003.07.003. [DOI] [PubMed] [Google Scholar]
  • 23.Mpanju O. M., Towner J. S., Dover J. E., et al. Identification of two amino acid residues on Ebola virus glycoprotein 1 critical for cell entry. Virus Res. 2006;121:205–214. doi: 10.1016/j.virusres.2006.06.002. [DOI] [PubMed] [Google Scholar]
  • 24.Neumann G., Feldmann H., Watanabe S., et al. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol. 2002;76:406–410. doi: 10.1128/JVI.76.1.406-410.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Prehaud C., Hellebrand E., Coudrier D., et al. Recombinant Ebola virus nucleoprotein and glycoprotein (Gabon 94 strain) provide new tools for the detection of human infections. J Gen Virol. 1998;79(Pt11):2565–2572. doi: 10.1099/0022-1317-79-11-2565. [DOI] [PubMed] [Google Scholar]
  • 26.Rong L., Bates P. Analysis of the subgroup A avian sarcoma and leukosis virus receptor: the 40-residue, cysteine-rich, low-density lipoprotein receptor repeat motif of Tva is sufficient to mediate viral entry. J Virol. 1995;69:4847–4853. doi: 10.1128/jvi.69.8.4847-4853.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Rong L., Gendron K., Strohl B., et al. Characterization of determinants for envelope binding and infection in Tva, the subgroup A avian sarcoma and leukosis virus receptor. J Virol. 1998;72:4552–4559. doi: 10.1128/jvi.72.6.4552-4559.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Russell C. J., Kantor K. L., Jardetzky T. S., et al. A dual-functional paramyxovirus F protein regulatory switch segment: activation and membrane fusion. J Cell Biol. 2003;163:363–374. doi: 10.1083/jcb.200305130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Sanchez A., Khan A. S., Zaki S. R., et al. Filoviridae: Marburg and Ebola Viruses. In: Knipe D. M., Howley P. M., et al., editors. Fields Virology. 4th ed. Philadelphia, PA: Lippicott Williams & Wilkins; 2001. pp. 1279–1304. [Google Scholar]
  • 30.Sanchez A., Kiley M. P., Holloway B. P., et al. Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res. 1993;29:215–240. doi: 10.1016/0168-1702(93)90063-S. [DOI] [PubMed] [Google Scholar]
  • 31.Sanchez A., Trappier S. G., Mahy B. W., et al. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA. 1996;93:3602–3607. doi: 10.1073/pnas.93.8.3602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Sanchez A., Trappier S. G., Stroher U., et al. Variation in the glycoprotein and VP35 genes of Marburg virus strains. Virology. 1998;240:138–146. doi: 10.1006/viro.1997.8902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Simmons G., Wool-Lewis R. J., Baribaud F., et al. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol. 2002;76:2518–2528. doi: 10.1128/jvi.76.5.2518-2528.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Takada A., Feldmann H., Stroeher U., et al. Identification of protective epitopes on ebola virus glycoprotein at the single amino acid level by using recombinant vesicular stomatitis viruses. J Virol. 2003;77:1069–1074. doi: 10.1128/JVI.77.2.1069-1074.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Takada A., Robison C., Goto H., et al. A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA. 1997;94:14764–14769. doi: 10.1073/pnas.94.26.14764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Volchkov V. E., Becker S., Volchkova V. A., et al. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology. 1995;214:421–430. doi: 10.1006/viro.1995.0052. [DOI] [PubMed] [Google Scholar]
  • 37.Volchkov V. E., Blinov V. M., Netesov S. V. The envelope glycoprotein of Ebola virus contains an immunosuppressive-like domain similar to oncogenic retroviruses. FEBS Lett. 1992;305:181–184. doi: 10.1016/0014-5793(92)80662-Z. [DOI] [PubMed] [Google Scholar]
  • 38.Weissenhorn W., Dessen A., Harrison S. C., et al. Atomic structure of the ectodomain from HIV-1 gp41. Nature. 1997;387:426–430. doi: 10.1038/387426a0. [DOI] [PubMed] [Google Scholar]
  • 39.Weissenhorn W., Calder L. J., Wharton S. A., et al. The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proc Natl Acad Sci USA. 1998;95:6032–6036. doi: 10.1073/pnas.95.11.6032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Wilson I. A., Skehel J. J., Wiley D. C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature. 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Nature Publishing Group

RESOURCES