Abstract
Attachment values of Mycoplasma pneumoniae to glass are normally very low when tested in buffer containing bovine serum albumin (10 mg/ml). However, the addition of one of the metabolizable sugars glucose, fructose, or mannose increased attachment more than 10-fold. The effect was dose dependent with a distinct optimum at about 0.25 mg/ml. Higher concentrations reduced this effect. Not only the sugars themselves but also the products of their catabolism, pyruvate and phosphoenolpyruvate, enhanced attachment. Pyruvate was effective in the same range of concentrations as the sugars, whereas phosphoenolpyruvate enhanced attachment at a significantly lower concentration (0.001 mg/ml). Higher levels of these substances also resulted in a decrease of attachment. The glucose-induced increase could be partially inhibited by glucose analogs, especially by 3-O-methyl-glucopyranoside, and by various inhibitors or glycolysis. Furthermore, attachment was strongly reduced by the uncoupling agents carbonylcyanide m-chlorophenylhydrazone and 2,4-dinitrophenol, as well as by dicyclohexylcarbodiimide, an inhibitor of the membrane-bound Mg2+-adenosine triphosphatase, whereas the ionophore valinomycin increased attachment by about 30%. These findings provide strong evidence for coupling between the attachment process of M. pneumoniae to glass and the utilization of metabolic energy.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amar A., Rottem S., Kahane I., Razin S. Characterization of the mycoplasma membrane proteins. VI. Composition and disposition of proteins in membranes from aging Mycoplasma hominis cultures. Biochim Biophys Acta. 1976 Mar 5;426(2):258–270. doi: 10.1016/0005-2736(76)90336-9. [DOI] [PubMed] [Google Scholar]
- Amar A., Rottem S., Razin S. Disposition of membrane proteins as affected by changes in the electrochemical gradient across Mycoplasma membranes. Biochem Biophys Res Commun. 1978 Sep 29;84(2):306–312. doi: 10.1016/0006-291x(78)90171-7. [DOI] [PubMed] [Google Scholar]
- Bredt W., Bitter-Suermann D. Interactions between Mycoplasma pneumoniae and guinea pig complement. Infect Immun. 1975 Mar;11(3):497–504. doi: 10.1128/iai.11.3.497-504.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bredt W. Growth morphology of Mycoplasma pneumoniae strain FH on glass surface. Proc Soc Exp Biol Med. 1968 Jun;128(2):338–340. doi: 10.3181/00379727-128-33009. [DOI] [PubMed] [Google Scholar]
- Cirillo V. P., Razin S. Distribution of a phosphoenolypyruvate-dependent sugar phosphotransferase system in mycoplasms. J Bacteriol. 1973 Jan;113(1):212–217. doi: 10.1128/jb.113.1.212-217.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dos Reis G. A., Oliveira-Castro G. M. Electrophysiology of phagocytic membranes. I. Potassium-dependent slow membrane hyperpolarizations in mice macrophages. Biochim Biophys Acta. 1977 Sep 19;469(3):257–263. doi: 10.1016/0005-2736(77)90161-4. [DOI] [PubMed] [Google Scholar]
- Feldner J., Bredt W., Kahane I. Adherence of erythrocytes to Mycoplasma pneumoniae. Infect Immun. 1979 Jul;25(1):60–67. doi: 10.1128/iai.25.1.60-67.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldner J., Bredt W., Razin S. Adherence of Mycoplasma pneumoniae to glass surfaces. Infect Immun. 1979 Oct;26(1):70–75. doi: 10.1128/iai.26.1.70-75.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabridge M. G., Barden-Stahl Y. D., Polisky R. B., Engelhardt J. A. Differences in the attachment of Mycoplasma pneumoniae cells and membranes to tracheal epithelium. Infect Immun. 1977 Jun;16(3):766–772. doi: 10.1128/iai.16.3.766-772.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harold F. M., Baarda J. R. Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction. J Bacteriol. 1968 Dec;96(6):2025–2034. doi: 10.1128/jb.96.6.2025-2034.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harold F. M. Ion currents and physiological functions in microorganisms. Annu Rev Microbiol. 1977;31:181–203. doi: 10.1146/annurev.mi.31.100177.001145. [DOI] [PubMed] [Google Scholar]
- Hu P. C., Collier A. M., Baseman J. B. Surface parasitism by Mycoplasma pneumoniae of respiratory epithelium. J Exp Med. 1977 May 1;145(5):1328–1343. doi: 10.1084/jem.145.5.1328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes R. O. Alteration of cell-surface proteins by viral transformation and by proteolysis. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3170–3174. doi: 10.1073/pnas.70.11.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahane I., Gat O., Banai M., Bredt W., Razin S. Adherence of Mycoplasma gallisepticum to glass. J Gen Microbiol. 1979 Mar;111(1):217–222. doi: 10.1099/00221287-111-1-217. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leblanc G., Le Grimellec C. Active K+ transport in Mycoplasms mycoides var. Capri. Relationships between K+ distribution, electrical potential and ATPase activity. Biochim Biophys Acta. 1979 Jun 13;554(1):168–179. doi: 10.1016/0005-2736(79)90016-6. [DOI] [PubMed] [Google Scholar]
- Michl J., Ohlbaum D. J., Silverstein S. C. 2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages II. Dissociation of the inhibitory effects of 2-deoxyglucose on phagocytosis and ATP generation. J Exp Med. 1976 Dec 1;144(6):1484–1493. doi: 10.1084/jem.144.6.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell P. Performance and conservation of osmotic work by proton-coupled solute porter systems. J Bioenerg. 1973 Jan;4(1):63–91. doi: 10.1007/BF01516051. [DOI] [PubMed] [Google Scholar]
- Powell D. A., Hu P. C., Wilson M., Collier A. M., Baseman J. B. Attachment of Mycoplasma pneumoniae to respiratory epithelium. Infect Immun. 1976 Mar;13(3):959–966. doi: 10.1128/iai.13.3.959-966.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RODWELL A. W. Nutrition and metabolism of Mycoplasma mycoides var. mycoides. Ann N Y Acad Sci. 1960 Jan 15;79:499–507. doi: 10.1111/j.1749-6632.1960.tb42716.x. [DOI] [PubMed] [Google Scholar]
- Romano A. H., Eberhard S. J., Dingle S. L., McDowell T. D. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria. J Bacteriol. 1970 Nov;104(2):808–813. doi: 10.1128/jb.104.2.808-813.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somerson N. L., James W. D., Walls B. E., Chanock R. M. Growth of Mycoplasma pneumoniae on a glass surface. Ann N Y Acad Sci. 1967 Jul 28;143(1):384–389. doi: 10.1111/j.1749-6632.1967.tb27680.x. [DOI] [PubMed] [Google Scholar]
- Tarshis M. A., Bekkouzjin A. G., Ladygina V. G. On the possible role of respiratory activity of Acholeplasma laidlawii cells in sugar transport. Arch Microbiol. 1976 Sep 1;109(3):295–299. doi: 10.1007/BF00446641. [DOI] [PubMed] [Google Scholar]
- Taylor-Robinson D., Manchee R. J. Adherence of mycoplasmas to glass and plastic. J Bacteriol. 1967 Nov;94(5):1781–1782. doi: 10.1128/jb.94.5.1781-1782.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Demark P. J., Plackett P. Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase in Mycoplasma strain Y. J Bacteriol. 1972 Aug;111(2):454–458. doi: 10.1128/jb.111.2.454-458.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinbach E. C., Garbus J. Structural changes in mitochondria induced by uncoupling reagents. The response to proteolytic enzymes. Biochem J. 1968 Feb;106(3):711–717. doi: 10.1042/bj1060711. [DOI] [PMC free article] [PubMed] [Google Scholar]
