Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1981 Jan;31(1):245–251. doi: 10.1128/iai.31.1.245-251.1981

Comparison of enterotoxic activities of heat-stable enterotoxins from class 1 and class 2 Escherichia coli of swine origin.

S C Whipp, H W Moon, R A Argenzio
PMCID: PMC351776  PMID: 7011991

Abstract

Pig small intestine develops age-dependent resistance to some (class 2 strains) enterotoxigenic Escherichia coli while remaining susceptible to others (class 1 strains). This study tested the hypothesis that class 1 and class 2 strains produce different subtypes of heat-stable enterotoxin (ST). The dose-response curves of small intestine to crude ST preparations from a class 1 and a class 2 strain were compared in several species. In infant mice, the class 1 ST preparation was less active than the class 2 ST preparation, whereas in rabbits the preparations were equally potent. However, in 1-, 7-, and 14-week-old pigs, the class 1 ST preparation was more active than the class 2 preparation. At low doses, both preparations caused reduced absorption in pigs of all three age groups, and at high doses the class 1 preparation caused secretion in all three age groups. In contrast, at high doses the class 2 preparation caused secretion in 1-week-old pigs but only reduced absorption in older pigs. when class 1 and class 2 ST preparations were fractionated by methanol extraction, in both cases the mouse-negative, pig-positive activity was associated with the methanol-insoluble fraction and mouse-positive, pig-positive activity was associated with the methanol-soluble fraction. The results are consistent with a hypothesis that class 1 and class 2 strains of enterotoxigenic E. coli produce different subtypes of ST and that the response of pig intestine to ST varies with both age and toxin subtype.

Full text

PDF
245

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderete J. F., Robertson D. C. Purification and chemical characterization of the heat-stable enterotoxin produced by porcine strains of enterotoxigenic Escherichia coli. Infect Immun. 1978 Mar;19(3):1021–1030. doi: 10.1128/iai.19.3.1021-1030.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burgess M. N., Bywater R. J., Cowley C. M., Mullan N. A., Newsome P. M. Biological evaluation of a methanol-soluble, heat-stable Escherichia coli enterotoxin in infant mice, pigs, rabbits, and calves. Infect Immun. 1978 Aug;21(2):526–531. doi: 10.1128/iai.21.2.526-531.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dobrescu L., Huygelen C. Protection of piglets against neonatal E. coli enteritis by immunization of the sow with a vaccine containing heat-labile enterotoxin (LT) I. Protection against experimentally induced diarrhoea. Zentralbl Veterinarmed B. 1976 Feb;23(1):79–88. doi: 10.1111/j.1439-0450.1976.tb00655.x. [DOI] [PubMed] [Google Scholar]
  4. Gyles C. L., Barnum D. A. A heat-labile enterotoxin from strains of Eschericha coli enteropathogenic for pigs. J Infect Dis. 1969 Oct;120(4):419–426. doi: 10.1093/infdis/120.4.419. [DOI] [PubMed] [Google Scholar]
  5. Gyles C. L. Limitations of the infant mouse test for Escherichia coli heat stable enterotoxin. Can J Comp Med. 1979 Oct;43(4):371–379. [PMC free article] [PubMed] [Google Scholar]
  6. Gyles C., So M., Falkow S. The enterotoxin plasmids of Escherichia coli. J Infect Dis. 1974 Jul;130(1):40–49. doi: 10.1093/infdis/130.1.40. [DOI] [PubMed] [Google Scholar]
  7. Jacks T. M., Wu B. J. Biochemical properties of Escherichia coli low-molecular-weight, heat-stable enterotoxin. Infect Immun. 1974 Feb;9(2):342–347. doi: 10.1128/iai.9.2.342-347.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kapitany R. A., Scoot A., Forsyth G. W., McKenzie S. L., Worthington R. W. Evidence for two heat-stable enterotoxins produced by enterotoxigenic Escherichia coli. Infect Immun. 1979 Jun;24(3):965–966. doi: 10.1128/iai.24.3.965-966.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klipstein F. A., Engert R. F. Immunological relationship of different preparations of coliform enterotoxins. Infect Immun. 1978 Sep;21(3):771–778. doi: 10.1128/iai.21.3.771-778.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kohler E. M. Enterotoxic activity of filtrates of escherichia coli in young pigs. Am J Vet Res. 1968 Dec;29(12):2263–2274. [PubMed] [Google Scholar]
  11. Moon H. W., Fung P. Y., Whipp S. C., Isaacson R. E. Effects of age and ambient temperature on the responses of infant mice to heat-stable enterotoxin of Escherichia coli: assay modifications. Infect Immun. 1978 Apr;20(1):36–39. doi: 10.1128/iai.20.1.36-39.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moon H. W., Kohler E. M., Schneider R. A., Whipp S. C. Prevalence of pilus antigens, enterotoxin types, and enteropathogenicity among K88-negative enterotoxigenic Escherichia coli from neonatal pigs. Infect Immun. 1980 Jan;27(1):222–230. doi: 10.1128/iai.27.1.222-230.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moon H. W., Whipp S. C. Development of resistance with age by swine intestine to effects of enteropathogenic Escherichia coli. J Infect Dis. 1970 Sep;122(3):220–223. doi: 10.1093/infdis/122.3.220. [DOI] [PubMed] [Google Scholar]
  14. Mullan N. A., Burgess M. N., Newsome P. M. Characterization of a partially purified methanol-soluble heat-stable Escherichia coli enterotoxin in infant mice. Infect Immun. 1978 Mar;19(3):779–784. doi: 10.1128/iai.19.3.779-784.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nalin D. R., Levine M. M., Young C. R., Bergquist E. J., McLaughlin J. C. Increased Escherichia coli enterotoxin detection after concentrating culture supernatants: possible new enterotoxin detectable in dogs but not in infant mice. J Clin Microbiol. 1978 Dec;8(6):700–703. doi: 10.1128/jcm.8.6.700-703.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olsson E., Söderlind O. Comparison of different assays for definition of heat-stable enterotoxigenicity of Escherichia coli porcine strains. J Clin Microbiol. 1980 Jan;11(1):6–15. doi: 10.1128/jcm.11.1.6-15.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith H. W., Gyles C. L. The relationship between two apparently different enterotoxins produced by enteropathogenic strains of Escherichia coli of porcine origin. J Med Microbiol. 1970 Aug;3(3):387–401. doi: 10.1099/00222615-3-3-387. [DOI] [PubMed] [Google Scholar]
  18. Smith H. W., Halls S. Studies on Escherichia coli enterotoxin. J Pathol Bacteriol. 1967 Apr;93(2):531–543. doi: 10.1002/path.1700930212. [DOI] [PubMed] [Google Scholar]
  19. Smith H. W., Linggood M. A. Further observations on Escherichia coli enterotoxins with particular regard to those produced by atypical piglet strains and by calf and lamb strains: the transmissible nature of these enterotoxins and of a K antigen possessed by calf and lamb strains. J Med Microbiol. 1972 May;5(2):243–250. doi: 10.1099/00222615-5-2-243. [DOI] [PubMed] [Google Scholar]
  20. Staples S. J., Asher S. E., Giannella R. A. Purification and characterization of heat-stable enterotoxin produced by a strain of E. coli pathogenic for man. J Biol Chem. 1980 May 25;255(10):4716–4721. [PubMed] [Google Scholar]
  21. Stevens J. B., Gyles C. L., Barnum D. A. Production of diarrhea in pigs in response to Escherichia coli enterotoxin. Am J Vet Res. 1972 Dec;33(12):2511–2526. [PubMed] [Google Scholar]
  22. Takeda Y., Takeda T., Yano T., Yamamoto K., Miwatani T. Purification and partial characterization of heat-stable enterotoxin of enterotoxigenic Escherichia coli. Infect Immun. 1979 Sep;25(3):978–985. doi: 10.1128/iai.25.3.978-985.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Whipp S. C., Moon H. W., Lyon N. C. Heat-stable Escherichia coli enterotoxin production in vivo. Infect Immun. 1975 Aug;12(2):240–244. doi: 10.1128/iai.12.2.240-244.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES