Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1977 Jan;11(1):34–37. doi: 10.1128/aac.11.1.34

Production of Megacins C and Cx: Presumptive Evidence of Extrachromosomal Control

Helen D Donoghue a,1
PMCID: PMC351914  PMID: 402106

Abstract

Exposure of growing cultures of Bacillus megaterium C4A to ethidium bromide or an elevated growth temperature was found to eliminate megacin C production. Ethidium bromide resulted in a cure rate of up to 13%. Growth at 43°C gave a cure rate of up to 99%. Megacin C production was lost spontaneously at a rate of 4% or less. There was a greater rate of spontaneous loss of megacin Cx production by B. megaterium 337, up to 14%. Growth at 43°C resulted in a cure rate of up to 24% in this organism. Reversion to the Meg+ state by cured clones has never been demonstrated. These observations support the hypothesis that production of megacins C and Cx is plasmid mediated. Meg clones adsorbed more megacin than either parent strain and were more susceptible to megacin action.

Full text

PDF
34

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouanchaud D. H., Scavizzi M. R., Chabbert Y. A. Elimination by ethidium bromide of antibiotic resistance in enterobacteria and staphylococci. J Gen Microbiol. 1968 Dec;54(3):417–425. doi: 10.1099/00221287-54-3-417. [DOI] [PubMed] [Google Scholar]
  2. Carlton B. C., Helinski D. R. Heterogeneous circular DNA elements in vegetative cultures of Bacillus megaterium. Proc Natl Acad Sci U S A. 1969 Oct;64(2):592–599. doi: 10.1073/pnas.64.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dajani A. S., Taube Z. Plasmid-mediated production of staphylococcin in bacteriophage type 71 Staphylococcus aureus. Antimicrob Agents Chemother. 1974 Jun;5(6):594–598. doi: 10.1128/aac.5.6.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dastidar S. G., Mitra S., Sarkar S. N., Chakrabarty A. N. Transformation with bacteriocin factors in staphylococci. J Gen Microbiol. 1974 Oct;84(2):245–252. doi: 10.1099/00221287-84-2-245. [DOI] [PubMed] [Google Scholar]
  5. Donoghue H. D. Properties and comparative starch-gel electrophoresis of megacins from several Bacillus megaterium strains. J Gen Microbiol. 1972 Oct;72(3):473–483. doi: 10.1099/00221287-72-3-473. [DOI] [PubMed] [Google Scholar]
  6. Durner K. Anreicherung, Reinigung und Charakterisierung eines Bacteriocins aus Bacillus megaterium 337. Z Allg Mikrobiol. 1970;10(2):93–102. doi: 10.1002/jobm.3630100202. [DOI] [PubMed] [Google Scholar]
  7. Durner K., Mach F. Physiologische Untersuchungen eines Bacteriocins aus Bacillus megaterium 337. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1966;120(6):565–575. [PubMed] [Google Scholar]
  8. Durner K. Untersuchungen zur Wirkungsweise von Megacin Cx auf Bacillus megaterium KM. Z Allg Mikrobiol. 1970;10(6):373–382. doi: 10.1002/jobm.3630100602. [DOI] [PubMed] [Google Scholar]
  9. FREDERICQ P. Colicins and colicinogenic factors. Symp Soc Exp Biol. 1958;12:104–122. [PubMed] [Google Scholar]
  10. HOLLAND I. B. A BACTERIOCIN SPECIFICALLY AFFECTING DNA SYNTHESIS IN BACILLUS MEGATERIUM. J Mol Biol. 1965 Jun;12:429–438. doi: 10.1016/s0022-2836(65)80265-0. [DOI] [PubMed] [Google Scholar]
  11. HOLLAND I. B., ROBERTS C. F. SOME PROPERTIES OF A NEW BACTERIOCIN FORMED BY BACILLUS MEGATERIUM. J Gen Microbiol. 1964 May;35:271–285. doi: 10.1099/00221287-35-2-271. [DOI] [PubMed] [Google Scholar]
  12. HOLLAND I. B. The purification and properties of megacin, a bacteriocin from Bacillus megaterium. Biochem J. 1961 Mar;78:641–648. doi: 10.1042/bj0780641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hale E. M., Hinsdill R. D. Biological activity of staphylococcin 162: bacteriocin from Staphylococcus aureus. Antimicrob Agents Chemother. 1975 Jan;7(1):74–81. doi: 10.1128/aac.7.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henneberry R. C., Carlton B. C. Characterization of the polydisperse closed circular deoxyribonucleic acid molecules of Bacillus megaterium. J Bacteriol. 1973 May;114(2):625–631. doi: 10.1128/jb.114.2.625-631.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. IVANOVICS G., ALFOLDI L. A new antibacterial principle: megacine. Nature. 1954 Sep 4;174(4427):465–465. doi: 10.1038/174465a0. [DOI] [PubMed] [Google Scholar]
  16. Jetten A. M., Vogels G. D. Characterization and extrachromosomal control of bacteriocin production in Staphylococcus aureus. Antimicrob Agents Chemother. 1973 Jul;4(1):49–57. doi: 10.1128/aac.4.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawakami M., Landman O. E. Retention of episomes during protoplasting and during propagation in the L state. J Bacteriol. 1966 Aug;92(2):398–404. doi: 10.1128/jb.92.2.398-404.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MAY J. W., HOUGHTON R. H., PERRET C. J. THE EFFECT OF GROWTH AT ELEVATED TEMPERATURES ON SOME HERITABLE PROPERTIES OF STAPHYLOCOCCUS AUREUS. J Gen Microbiol. 1964 Nov;37:157–169. doi: 10.1099/00221287-37-2-157. [DOI] [PubMed] [Google Scholar]
  19. Nomura M. Colicins and related bacteriocins. Annu Rev Microbiol. 1967;21:257–284. doi: 10.1146/annurev.mi.21.100167.001353. [DOI] [PubMed] [Google Scholar]
  20. Novick R. P. Extrachromosomal inheritance in bacteria. Bacteriol Rev. 1969 Jun;33(2):210–263. doi: 10.1128/br.33.2.210-263.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Warren R., Rogolsky M., Wiley B. B., Glasgow L. A. Effect of ethidium bromide on elimination of exfoliative toxin and bacteriocin production in Staphylococcus aureus. J Bacteriol. 1974 Jun;118(3):980–985. doi: 10.1128/jb.118.3.980-985.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES