Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1977 Feb;11(2):312–317. doi: 10.1128/aac.11.2.312

Lethal and Mutagenic Effects of 5-Iodouracil on Bacteriophage T4td8rII

Daniel M Byrd 1,1, William H Prusoff 1
PMCID: PMC351973  PMID: 848938

Abstract

Evidence was obtained which indicates that the lethal effect of 5-iodouracil (IUra) on bacteriophage T4 is not due to a mutagenic process. T4td8rII (thymine requiring, rapid lysis) double mutants were constructed. Reversion of T4td8rII to r+ was measured. First, reversion by growth in the presence of the structural analogues chlorouracil (ClUra) and bromouracil (BrUra) did not correlate with their relative lethal effects (for mutagenesis: IUra ≤ ClUra ≤ BrUra; for lethality: ClUra < BrUra < IUra). Second, reversion frequencies of T4td8rII in infected cells increased linearly with time of growth in the presence of IUra, whereas the frequency of lethality was constant with time. Third, reversion frequencies increased markedly at low levels of IUra substitution, whereas lethal effects were apparent only with extensive IUra substitution. Fourth, the reversion frequency of the nonviable fraction of IUra-substituted T4td8rII (as examined by multiplicity reactivation) did not differ significantly from that of the viable IUra-substituted T4td8 fraction. If mutagenesis caused lethality, then the nonviable T4td8rII fraction should accumulate mutations and have a higher reversion frequency.

Full text

PDF
312

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aamodt L., Goz B. An immunological study of an enzyme made by phage containing 5-iodo-2'-deoxyuridine-substitted deoxyribonucleic acid. Biochem Pharmacol. 1970 Jul;19(7):2400–2403. doi: 10.1016/0006-2952(70)90141-3. [DOI] [PubMed] [Google Scholar]
  2. Benzer S. FINE STRUCTURE OF A GENETIC REGION IN BACTERIOPHAGE. Proc Natl Acad Sci U S A. 1955 Jun 15;41(6):344–354. doi: 10.1073/pnas.41.6.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byrd D. M., Prusoff W. H. Multiplicity reactivation of 5-iodouracil-substituted, nonviable bacteriophage T4td8. Antimicrob Agents Chemother. 1975 Nov;8(5):558–563. doi: 10.1128/aac.8.5.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byrd D. M., Prusoff W. H. The effect of 5-iodouracil on the growth and biosynthetic processes of bacteriophage T4td8 in the absence of light. Chem Biol Interact. 1976 Feb;12(2):197–210. doi: 10.1016/0009-2797(76)90099-5. [DOI] [PubMed] [Google Scholar]
  5. CHAMPE S. P., BENZER S. Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc Natl Acad Sci U S A. 1962 Apr 15;48:532–546. doi: 10.1073/pnas.48.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. COWIE D. B., COHEN G. N., BOLTON E. T., DE ROBICHON-SZULMAJSTER H. Amino acid analog incorporation into bacterial proteins. Biochim Biophys Acta. 1959 Jul;34:39–46. doi: 10.1016/0006-3002(59)90230-6. [DOI] [PubMed] [Google Scholar]
  7. DUNN D. B., SMITH J. D. Effects of 5-halogenated uracils on the growth of Escherichia coli and their incorporation into deoxyribonucleic acids. Biochem J. 1957 Nov;67(3):494–506. doi: 10.1042/bj0670494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fleming W. H., Bessman M. J. The enzymology of virus-infected bacteria. IX. Purification and properties of the deoxycytidylate deaminase of T6-infected Escherichia coli. J Biol Chem. 1967 Feb 10;242(3):363–371. [PubMed] [Google Scholar]
  9. Freese E. B., Freese E. On the specificity of DNA polymerase. Proc Natl Acad Sci U S A. 1967 Mar;57(3):650–657. doi: 10.1073/pnas.57.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Freese E. THE DIFFERENCE BETWEEN SPONTANEOUS AND BASE-ANALOGUE INDUCED MUTATIONS OF PHAGE T4. Proc Natl Acad Sci U S A. 1959 Apr;45(4):622–633. doi: 10.1073/pnas.45.4.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goz B., Prusoff W. H. The ability of phage containing 5-iodo-2'-deoxyuridine-subsituted deoxyribonucleic acid to induce enzymes. J Biol Chem. 1968 Sep 25;243(18):4750–4756. [PubMed] [Google Scholar]
  12. HERSHEY A. D., CHASE M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952 May;36(1):39–56. doi: 10.1085/jgp.36.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hall D. H., Tessman I., Karlström O. Linkage of T4 genes controlling a series of steps in pyrimidine biosynthesis. Virology. 1967 Mar;31(3):442–448. doi: 10.1016/0042-6822(67)90224-3. [DOI] [PubMed] [Google Scholar]
  14. KIT S., DUBBS D. R. Acquisition of thymidine kinase activity by herpes simplex-infected mouse fibroblast cells. Biochem Biophys Res Commun. 1963 Apr 2;11:55–59. doi: 10.1016/0006-291x(63)90027-5. [DOI] [PubMed] [Google Scholar]
  15. KRIEG D. R. A study of gene action in ultraviolet-irradiated bacteriophage T4. Virology. 1959 May;8(1):80–98. doi: 10.1016/0042-6822(59)90021-2. [DOI] [PubMed] [Google Scholar]
  16. LITMAN R. M., PARDEE A. B. Production of bacteriophage mutants by a disturbance of deoxyribonucleic acid metabolism. Nature. 1956 Sep 8;178(4532):529–531. doi: 10.1038/178529b0. [DOI] [PubMed] [Google Scholar]
  17. SUSMAN M., PIECHOWSKI M. M. STUDIES ON PHAGE DEVELOPMENT. I. AN ACRIDINE-SENSITIVE CLOCK. Virology. 1965 Jun;26:163–174. doi: 10.1016/0042-6822(65)90043-7. [DOI] [PubMed] [Google Scholar]
  18. Snustad D. P. Dominance interactions in Escherichia coli cells mixedly infected with bacteriophage T4D wild-type and amber mutants and their possible implications as to type of gene-product function: catalytic vs. stoichiometric. Virology. 1968 Aug;35(4):550–563. doi: 10.1016/0042-6822(68)90285-7. [DOI] [PubMed] [Google Scholar]
  19. TERZAGHI B. E., STREISINGER G., STAHL F. W. The mechanism of 5-bromouracil mutagenesis in the bacteriophage T alpha. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1519–1524. doi: 10.1073/pnas.48.9.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tessman I. Mutagenic treatment of double- and single-stranded DNA phages T4 ans S13 with hydroxylamine. Virology. 1968 Jun;35(2):330–333. doi: 10.1016/0042-6822(68)90275-4. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES