Abstract
Yeast cells exposed to different doses of the antimycotic agent miconazole revealed important cytochemical changes in the topographic distribution of the phosphatases. A strong effect was observed on the behavior of oxidative and peroxidative enzymes. Decreased cytochrome c oxidase and peroxidase activity and increased catalase activity were seen after treatment with a fungistatic dose of miconazole, whereas a complete disappearance of these enzymes was observed after treatment with a minimal fungicidal dose of miconazole. This was in complete agreement with the quantitative biochemical data. A hypothesis is advanced concerning the possible involvement of peroxidase and catalase in the mechanism of action of this drug.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer H., Sigarlakie E. Localization of alkaline phosphatase in Saccharomyces cerevisiae by means of ultrathin frozen sections. J Ultrastruct Res. 1975 Feb;50(2):208–215. doi: 10.1016/s0022-5320(75)80052-9. [DOI] [PubMed] [Google Scholar]
- Borgers M., De Nollin S. The preservation of subcellular organelles of Candida albicans with conventional fixatives. J Cell Biol. 1974 Aug;62(2):574–581. doi: 10.1083/jcb.62.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borgers M., Schaper J., Schaper W. Localization of specific phosphatase activities in canine coronary blood vessels and heart muscle. J Histochem Cytochem. 1971 Sep;19(9):526–539. doi: 10.1177/19.9.526. [DOI] [PubMed] [Google Scholar]
- Botter A. A. Topical treatment of nail and skin infections with miconazole, a new broad-spectrum antimycotic. Mykosen. 1971 Apr 1;14(4):187–191. doi: 10.1111/j.1439-0507.1971.tb03028.x. [DOI] [PubMed] [Google Scholar]
- Bowen I. D., Ryder T. A. Use of the p-nitrophenyl phosphate method for the demonstration of acid phosphatase during starvation and cell autolysis in the planarian Polycelis tenuis Iijima. Histochem J. 1976 May;8(3):319–329. doi: 10.1007/BF01003820. [DOI] [PubMed] [Google Scholar]
- Brugmans J. P., Van Cutsem J. M., Thienpont D. C. Treatment of long-term tinea pedis with miconazole. Double-blind clinical evaluation. Arch Dermatol. 1970 Oct;102(4):428–432. [PubMed] [Google Scholar]
- CHANTRENNE H. Peroxydases induites par l'oxygène chez la levure. Biochim Biophys Acta. 1955 Sep;18(1):58–62. doi: 10.1016/0006-3002(55)90008-1. [DOI] [PubMed] [Google Scholar]
- De Nollin S., Borgers M. Scanning electron microscopy of Candida albicans after in vitro treatment with miconazole. Antimicrob Agents Chemother. 1975 May;7(5):704–711. doi: 10.1128/aac.7.5.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Nollin S., Borgers M. The ultrastructure of Candida albicans after in vitro treatment with miconazole. Sabouraudia. 1974 Nov;12(3):341–351. [PubMed] [Google Scholar]
- De Nollin S., Thoné F., Borgers M. Enzyme cytochemistry of Candida albicans. J Histochem Cytochem. 1975 Oct;23(10):758–765. doi: 10.1177/23.10.172554. [DOI] [PubMed] [Google Scholar]
- Erman J. E., Yonetani T. The oxidation of cytochrome c peroxidase by hydrogen peroxide. Characterization of products. Biochim Biophys Acta. 1975 Jun 26;393(2):343–349. doi: 10.1016/0005-2795(75)90060-4. [DOI] [PubMed] [Google Scholar]
- Fahimi H. D. Cytochemical localization of peroxidatic activity of catalase in rat hepatic microbodies (peroxisomes). J Cell Biol. 1969 Nov;43(2):275–288. doi: 10.1083/jcb.43.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukui S., Tanaka A., Kawamoto S., Yasuhara S., Teranishi Y., Osumi M. Ultrastructure of methanol-utilizing yeast cells: appearance of microbodies in relation to high catalase activity. J Bacteriol. 1975 Jul;123(1):317–328. doi: 10.1128/jb.123.1.317-328.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gifford G. D., Pritchard G. G. Toxicity of hyperbaric oxygen to yeasts displaying periodic enzyme synthesis. J Gen Microbiol. 1969 May;56(2):143–149. doi: 10.1099/00221287-56-2-143. [DOI] [PubMed] [Google Scholar]
- Godefroi E. F., Heeres J., Van Cutsem J., Janssen P. A. The preparation and antimycotic properties of derivatives of 1-phenethylimidazole. J Med Chem. 1969 Sep;12(5):784–791. doi: 10.1021/jm00305a014. [DOI] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
- Groot G. S., Poyton R. O. Oxygen control of cytochrome c oxidase synthesis in isolated mitochondria from Saccharomyces cerevisiae. Nature. 1975 May 15;255(5505):238–240. doi: 10.1038/255238a0. [DOI] [PubMed] [Google Scholar]
- Hoffmann H. P., Szabo A., Avers C. J. Cytochemical localization of catalase activity in yeast peroxisomes. J Bacteriol. 1970 Oct;104(1):581–584. doi: 10.1128/jb.104.1.581-584.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hugon J., Borgers M. Ultrastructural localization of alkaline phosphatase activity in the absorbing cells of the duodenum of mouse. J Histochem Cytochem. 1966 Sep;14(9):629–640. doi: 10.1177/14.9.629. [DOI] [PubMed] [Google Scholar]
- Novikoff A. B., Goldfischer S. Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J Histochem Cytochem. 1969 Oct;17(10):675–680. doi: 10.1177/17.10.675. [DOI] [PubMed] [Google Scholar]
- Osumi M., Miwa N., Teranishi Y., Tanaka A., Fukui S. Ultrastructure of Candida yeasts grown on n-alkanes. Appearance of microbodies and its relationship to high catalase activity. Arch Microbiol. 1974;99(3):181–201. doi: 10.1007/BF00696234. [DOI] [PubMed] [Google Scholar]
- Polakis E. S., Bartley W., Meek G. A. Changes in the structure and enzyme activity of Saccharomyces cerevisiae in response to changes in the environment. Biochem J. 1964 Feb;90(2):369–374. doi: 10.1042/bj0900369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roels F., Wisse E., De Prest B., van der Meulen J. Cytochemical discrimination between catalases and peroxidases using diaminobenzidine. Histochemistry. 1975;41(4):281–312. doi: 10.1007/BF00490073. [DOI] [PubMed] [Google Scholar]
- Schmitt-Verhulst A. M., Bex F., Sels A. A. Studies on the mechanism of the oxygen-induced synthesis of cytochrome oxidase in yeast. Specific effects of benzimidazole on cytochrome-oxidase anabolism. Eur J Biochem. 1973 Jul 2;36(1):185–194. doi: 10.1111/j.1432-1033.1973.tb02900.x. [DOI] [PubMed] [Google Scholar]
- Seligman A. M., Karnovsky M. J., Wasserkrug H. L., Hanker J. S. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol. 1968 Jul;38(1):1–14. doi: 10.1083/jcb.38.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sels A. A. Origin of the increase in adaptability to oxygen of yeast pretreated with benzimidazole. Biochem Biophys Res Commun. 1969 Mar 31;34(6):740–747. doi: 10.1016/0006-291x(69)90241-1. [DOI] [PubMed] [Google Scholar]
- Todd M. M., Vigil E. L. Cytochemical localization of peroxidase activity in Saccharomyces cerevisiae. J Histochem Cytochem. 1972 May;20(5):344–349. doi: 10.1177/20.5.344. [DOI] [PubMed] [Google Scholar]
- Van Belle H. Alkaline phosphatase. II. Conditions affecting determination of total activity in serum. Clin Chem. 1976 Jul;22(7):977–981. [PubMed] [Google Scholar]
- Van Cutsem J. M., Thienpont D. Miconazole, a broad-spectrum antimycotic agent with antibacterial activity. Chemotherapy. 1972;17(6):392–404. doi: 10.1159/000220875. [DOI] [PubMed] [Google Scholar]
- Van Den Bossche H., Willemsens G., Van Cutsem J. M. The action of miconazole of the growth of Candida albicans. Sabouraudia. 1975 Mar;13(Pt 1):63–73. [PubMed] [Google Scholar]
- Van den Bossche H. Biochemical effects of miconazole on fungi. I. Effects on the uptake and or utilization of purines, pyrimidines, nucleosides, amino acids and glucose by Candida albicans. Biochem Pharmacol. 1974 Feb 15;23(4):887–899. doi: 10.1016/0006-2952(74)90220-2. [DOI] [PubMed] [Google Scholar]
- Vorísek J., Volfová O. Catalase activity in methanol-oxidizing Candida boidinii 11 Bh and its cytochemical localization. FEBS Lett. 1975 Apr 1;52(2):246–250. doi: 10.1016/0014-5793(75)80816-7. [DOI] [PubMed] [Google Scholar]
- WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
- van Dijken J. P., Veenhuis M., Kreger-van Rij N. J., Harder W. Microbodies in methanol-assimilating yeasts. Arch Microbiol. 1975;102(1):41–44. doi: 10.1007/BF00428343. [DOI] [PubMed] [Google Scholar]
- van Rijn H. J., Linnemans W. A., Boer P. Localization of acid phosphatase in protoplasts from Saccharomyces cerevisiae. J Bacteriol. 1975 Sep;123(3):1144–1149. doi: 10.1128/jb.123.3.1144-1149.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]