Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1977 May;11(5):871–876. doi: 10.1128/aac.11.5.871

Inducible Resistance to d-Cycloserine in Bacillus subtilis 168

Virginia L Clark a,1, Frank E Young a
PMCID: PMC352089  PMID: 406831

Abstract

Resistance to d-cycloserine could be induced in Bacillus subtilis 168 by sublethal concentrations of d-cycloserine. Sensitivity to the antibiotic could be regained by growth in the absence of d-cycloserine. The bactericidal activity of d-cycloserine apparently was not altered by resistant cells, and peptidoglycan synthesis was still inhibited by d-cycloserine in resistant cells. The d-cycloserine resistance apparently resulted from a decreased uptake of the antibiotic. The decrease in d-cycloserine transport could be prevented by simultaneous treatment of the cells with rifampin and d-cycloserine. d-Cycloserine was transported by the same system as glycine in B. subtilis. d-Cycloserine was able to exchange for intracellular glycine in both sensitive and resistant cells, suggesting that d-cycloserine is not excluded from the cell in resistant cultures.

Full text

PDF
871

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benveniste R., Davies J. Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem. 1973;42:471–506. doi: 10.1146/annurev.bi.42.070173.002351. [DOI] [PubMed] [Google Scholar]
  2. Clark V. L., Young F. E. Active transport of D-alanine and related amino acids by whole cells of Bacillus subtilis. J Bacteriol. 1974 Dec;120(3):1085–1092. doi: 10.1128/jb.120.3.1085-1092.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davies J. E., Benveniste R. E. Enzymes that inactivate antibiotics in transit to their targets. Ann N Y Acad Sci. 1974 May 10;235(0):130–136. doi: 10.1111/j.1749-6632.1974.tb43262.x. [DOI] [PubMed] [Google Scholar]
  4. Halpern Y. S. Genetics of amino acid transport in bacteria. Annu Rev Genet. 1974;8:103–133. doi: 10.1146/annurev.ge.08.120174.000535. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lambert M. P., Neuhaus F. C. Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol. 1972 Jun;110(3):978–987. doi: 10.1128/jb.110.3.978-987.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. NEUHAUS F. C., LYNCH J. L. THE ENZYMATIC SYNTHESIS OF D-ALANYL-D-ALANINE. 3. ON THE INHIBITION OF D-ALANYL-D-ALANINE SYNTHETASE BY THE ANTIBIOTIC D-CYCLOSERINE. Biochemistry. 1964 Apr;3:471–480. doi: 10.1021/bi00892a001. [DOI] [PubMed] [Google Scholar]
  8. PARK J. T., HANCOCK R. A fractionation procedure for studies of the synthesis of cell-wall mucopeptide and of other polymers in cells of Staphylococcus aureus. J Gen Microbiol. 1960 Feb;22:249–258. doi: 10.1099/00221287-22-1-249. [DOI] [PubMed] [Google Scholar]
  9. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wargel R. J., Hadur C. A., Neuhaus F. C. Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine, and glycine. J Bacteriol. 1971 Mar;105(3):1028–1035. doi: 10.1128/jb.105.3.1028-1035.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wargel R. J., Shadur C. A., Neuhaus F. C. Mechanism of D-cycloserine action: transport systems for D-alanine, D-cycloserine, L-alanine, and glycine. J Bacteriol. 1970 Sep;103(3):778–788. doi: 10.1128/jb.103.3.778-788.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wojdani A., Avtalion R. R., Sompolinsky D. Isolation and characterization of tetracycline resistance proteins from Staphylococcus aureus and Escherichia coli. Antimicrob Agents Chemother. 1976 Mar;9(3):526–534. doi: 10.1128/aac.9.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yang H. L., Zubay G., Levy S. B. Synthesis of an R plasmid protein associated with tetracycline resistance is negatively regulated. Proc Natl Acad Sci U S A. 1976 May;73(5):1509–1512. doi: 10.1073/pnas.73.5.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Young T. W., Hubball S. J. R-factor-mediated resistance to tetracycline in Escherichia coli K12: an R-factor with a mutation to temperature-sensitive tetracycline resistance. Biochem Biophys Res Commun. 1976 May 3;70(1):117–124. doi: 10.1016/0006-291x(76)91116-5. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES