Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1977 May;11(5):897–905. doi: 10.1128/aac.11.5.897

Unusual Susceptibility of Erwinia amylovora to Antibacterial Agents in Relation to the Barrier Function of its Cell Envelope

Arun K Chatterjee 1, Richard F Buss 1, Mortimer P Starr 1
PMCID: PMC352093  PMID: 879740

Abstract

Wild-type strains of the bacterial phytopathogen Erwinia amylovora (the cause of fire blight disease of apples and pears) are markedly susceptible to novobiocin, deoxycholate, and sodium dodecyl (= lauryl) sulfate. The inhibitory concentration, expressed as the concentration causing a 99% inhibition of growth, of these three antibacterial agents were 15 to 100, 40 to 800, and 50 to 800 μg/ml, respectively, depending on the E. amylovora strain. Growth of strains of other Erwinia spp. and Salmonella typhimurium is not affected at all, or is only slightly affected, at these concentrations. Introduction of the F′lac+, RP1, and R100drd-56 (but not E-lac+) plasmids into an E. amylovora strain results in enhanced susceptibility to novobiocin and sodium dodecyl sulfate but not to deoxycholate. E. amylovora wild-type strains spontaneously release a periplasmic enzyme, cyclic phosphodiesterase, but not a cytoplasmic enzyme, glucose-6-phosphate dehydrogenase, into the growth medium. Addition of MgCl2 (20 mM) and NaCl (84 mM) to tryptone broth stimulates the growth of wild-type E. amylovora strains and reduces or eliminates leakage of the periplasmic enzyme. Mutant strains of E. amylovora, selected for resistance to each separate antibacterial agent (or to all three of them), showed a direct correlation (in all but the novobiocin-resistant mutant) between drug resistance and reduced periplasmic leakiness. The relatively low maximum growth temperature (<37°C) of E. amylovora seems unrelated to periplasmic leakage, as judged from the inability of added MgCl2 to raise the maximum growth temperature, although the generation time at 30°C is reduced from 108 to 54 min upon the addition of 20 mM MgCl2. The extensive leakage of periplasmic enzyme and unusual drug susceptibility of E. amylovora strains might stem from some defect(s) in some cell envelope component(s) other than the lipopolysaccharide of these bacteria (which contain the usual liposaccharide constituents).

Full text

PDF
897

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANRAKU Y. A NEW CYCLIC PHOSPHODIESTERASE HAVING A 3'-NUCLEOTIDASE ACTIVITY FROM ESCHERICHIA COLI B. I. PURIFICATION AND SOME PROPERTIES OF THE ENZYME. J Biol Chem. 1964 Oct;239:3412–3419. [PubMed] [Google Scholar]
  2. Ames G. F., Spudich E. N., Nikaido H. Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations. J Bacteriol. 1974 Feb;117(2):406–416. doi: 10.1128/jb.117.2.406-416.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Billing E. The effect of temperature on the growth of the fireblight pathogen, Erwinia amylovora. J Appl Bacteriol. 1974 Dec;37(4):643–648. doi: 10.1111/j.1365-2672.1974.tb00488.x. [DOI] [PubMed] [Google Scholar]
  4. Chatterjee A. K., Ross H., Sanderson K. E. Leakage of periplasmic enzymes from lipopolysaccharide-defective mutants of Salmonella typhimurium. Can J Microbiol. 1976 Oct;22(10):1549–1560. doi: 10.1139/m76-227. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee A. K., Sanderson K. E., Ross H. Influence of temperature on growth of lipopolysaccharide-deficient (rough) mutants of Salmonella typhimurium and Salmonella minnesota. Can J Microbiol. 1976 Oct;22(10):1540–1548. doi: 10.1139/m76-226. [DOI] [PubMed] [Google Scholar]
  6. Chatterjee A. K., Starr M. P. Gene transmission among strains of Erwinia amylovora. J Bacteriol. 1973 Dec;116(3):1100–1106. doi: 10.1128/jb.116.3.1100-1106.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chatterjee A. K., Starr M. P. Genetic transfer of episomic elements among Erwinia species and other enterobacteria: F'Lac+. J Bacteriol. 1972 Jul;111(1):169–176. doi: 10.1128/jb.111.1.169-176.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chatterjee A. K., Starr M. P. Transfer among Erwinia spp. and other enterobacteria of antibiotic resistance carried on R factors. J Bacteriol. 1972 Oct;112(1):576–584. doi: 10.1128/jb.112.1.576-584.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chatterjee A. K., Starr M. P. Transmission of lac by the sex factor E in Erwinia strains from human clinical sources. Infect Immun. 1973 Oct;8(4):563–572. doi: 10.1128/iai.8.4.563-572.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Corwin L. M., Rothman S. W., Kim R., Talevi L. A. Mechanisms and genetics of resistance to sodium lauryl sulfate in strains of Shigella and Escherichia coli. Infect Immun. 1971 Sep;4(3):287–294. doi: 10.1128/iai.4.3.287-294.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Costerton J. W., Ingram J. M., Cheng K. J. Structure and function of the cell envelope of gram-negative bacteria. Bacteriol Rev. 1974 Mar;38(1):87–110. doi: 10.1128/br.38.1.87-110.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Derylo M., Glowacka M., Lorkiewicz Z., Russa R. Plasmid-determined alterations of Salmonella typhimurium lipopolysaccharides. Mol Gen Genet. 1975 Sep 29;140(2):175–181. doi: 10.1007/BF00329785. [DOI] [PubMed] [Google Scholar]
  13. Ennis H. L., Bloomstein M. I. Discussion paper: antibiotic-sensitive mutants of Escherichia coli possess altered outer membranes. Ann N Y Acad Sci. 1974 May 10;235(0):593–600. doi: 10.1111/j.1749-6632.1974.tb43293.x. [DOI] [PubMed] [Google Scholar]
  14. Goodman R. N., Huang J. S., Huang P. Y. Host-Specific Phytotoxic Polysaccharide from Apple Tissue Infected by Erwinia amylovora. Science. 1974 Mar 15;183(4129):1081–1082. doi: 10.1126/science.183.4129.1081. [DOI] [PubMed] [Google Scholar]
  15. Irvin R. T., Chatterjee A. K., Sanderson K. E., Costerton J. W. Comparison of the cell envelope structure of a lipopolysaccharide-defective (heptose-deficient) strain and a smooth strain of Salmonella typhimurium. J Bacteriol. 1975 Nov;124(2):930–941. doi: 10.1128/jb.124.2.930-941.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koplow J., Goldfine H. Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli. J Bacteriol. 1974 Feb;117(2):527–543. doi: 10.1128/jb.117.2.527-543.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LEIVE L. A NONSPECIFIC INCREASE IN PERMEABILITY IN ESCHERICHIA COLI PRODUCED BY EDTA. Proc Natl Acad Sci U S A. 1965 Apr;53:745–750. doi: 10.1073/pnas.53.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LIN E. C., LERNER S. A., JORGENSEN S. E. A method for isolating constitutive mutants for carbohydrate-catabolizing enzymes. Biochim Biophys Acta. 1962 Jul 2;60:422–424. doi: 10.1016/0006-3002(62)90423-7. [DOI] [PubMed] [Google Scholar]
  19. Leive L. The barrier function of the gram-negative envelope. Ann N Y Acad Sci. 1974 May 10;235(0):109–129. doi: 10.1111/j.1749-6632.1974.tb43261.x. [DOI] [PubMed] [Google Scholar]
  20. Lindsay S. S., Wheeler B., Sanderson K. E., Costerton J. W., Cheng K. J. The release of alkaline phosphatase and of lipopolysaccharide during the growth of rough and smooth strains of Salmonella typhimurium. Can J Microbiol. 1973 Mar;19(3):335–343. doi: 10.1139/m73-056. [DOI] [PubMed] [Google Scholar]
  21. Lopes J., Gottfried S., Rothfield L. Leakage of periplasmic enzymes by mutants of Escherichia coli and Salmonella typhimurium: isolation of "periplasmic leaky" mutants. J Bacteriol. 1972 Feb;109(2):520–525. doi: 10.1128/jb.109.2.520-525.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neu H. C. The 5'-nucleotidase of Escherichia coli. I. Purification and properties. J Biol Chem. 1967 Sep 10;242(17):3896–3904. [PubMed] [Google Scholar]
  23. Osborn M. J., Gander J. E., Parisi E., Carson J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem. 1972 Jun 25;247(12):3962–3972. [PubMed] [Google Scholar]
  24. Pugashetti B. K., Starr M. P. Conjugational transfer of genes determining plant virulence in Erwinia amylovora. J Bacteriol. 1975 May;122(2):485–491. doi: 10.1128/jb.122.2.485-491.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanderson K. E., MacAlister T., Costerton J. W., Cheng K. J. Permeability of lipopolysaccharide-deficient (rough) mutants of Salmonella typhimurium to antibiotics, lysozyme, and other agents. Can J Microbiol. 1974 Aug;20(8):1135–1145. doi: 10.1139/m74-176. [DOI] [PubMed] [Google Scholar]
  26. Sanderson K. E., Van Wyngaarden J., Lüderitz O., Stocker B. A. Rough mutants of Salmonella typhimurium with defects in the heptose region of the lipopolysaccharide core. Can J Microbiol. 1974 Aug;20(8):1127–1134. doi: 10.1139/m74-175. [DOI] [PubMed] [Google Scholar]
  27. Schlecht S., Westphal O. Untersuchungen zur Typisierung von Salmonella-R-Formen. 4. Typisierung von S. minnesota-R-Mutanten mittels Antibiotica. Zentralbl Bakteriol Orig. 1970 Apr;213(3):356–380. [PubMed] [Google Scholar]
  28. Sompolinsky D., Samra Z. Influence of magnesium and manganese on some biological and physical properties of tetracycline. J Bacteriol. 1972 May;110(2):468–476. doi: 10.1128/jb.110.2.468-476.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Starr M. P., Chatterjee A. K. The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol. 1972;26:389–426. doi: 10.1146/annurev.mi.26.100172.002133. [DOI] [PubMed] [Google Scholar]
  30. Tamaki S., Sato T., Matsuhashi M. Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12. J Bacteriol. 1971 Mar;105(3):968–975. doi: 10.1128/jb.105.3.968-975.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES