Abstract
Escherichia coli mutants resistant to streptomycin exhibited differences in countercurrent distribution from the parental strains. The degree of difference from the parental strain correlated with the degree of restriction of translation and thus the particular strA allele. The changes in countercurrent distribution in the phase systems used probably resulted predominantly from surface charge alterations. The differences in countercurrent distribution in these and other mutants may be a useful selective technique to obtain different types of mutants for which specific selective techniques may not be available. In addition, it appears that the surface properties of cells, which determine their position in countercurrent distribution, are a function of the translational efficiency and fidelity, and that the surface of cells consists of a mosaic that is an expression of this translational fidelity.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERTSSON P. A., BAIRD G. D. Counter-current distribution of cells. Exp Cell Res. 1962 Nov;28:296–322. doi: 10.1016/0014-4827(62)90285-9. [DOI] [PubMed] [Google Scholar]
- Bissell D. M. Formation of an altered enzyme by Escherichia coli in the presence of neomycin. J Mol Biol. 1965 Dec;14(2):619–622. doi: 10.1016/s0022-2836(65)80215-7. [DOI] [PubMed] [Google Scholar]
- Bodley J. W., Davie E. W. A study of the mechanism of ambiguous amino acid coding by poly U: the nature of the products. J Mol Biol. 1966 Jul;18(2):344–355. doi: 10.1016/s0022-2836(66)80252-8. [DOI] [PubMed] [Google Scholar]
- Breckenridge L., Gorini L. Genetic analysis of streptomycin resistance in Escherichia coli. Genetics. 1970 May;65(1):9–25. doi: 10.1093/genetics/65.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couturier M., Desmet L., Thomas R. High pleiotropy of streptomycin mutations in Escherichia coli. Biochem Biophys Res Commun. 1964 Jun 15;16(3):244–248. doi: 10.1016/0006-291x(64)90333-x. [DOI] [PubMed] [Google Scholar]
- Funatsu G., Nierhaus K., Wittmann H. G. Ribosomal proteins. XXXVII. Determination of allelle types and amino acid exchanges in protein S12 of three streptomycin-resistant mutants of Escherichia coli. Biochim Biophys Acta. 1972 Dec 6;287(2):282–291. doi: 10.1016/0005-2787(72)90377-2. [DOI] [PubMed] [Google Scholar]
- Funatsu G., Wittmann H. G. Ribosomal proteins. 33. Location of amino-acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin. J Mol Biol. 1972 Jul 28;68(3):547–550. doi: 10.1016/0022-2836(72)90108-8. [DOI] [PubMed] [Google Scholar]
- GORINI L., GUNDERSEN W., BURGER M. Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:173–182. doi: 10.1101/sqb.1961.026.01.022. [DOI] [PubMed] [Google Scholar]
- Gartner T. K., Orias E. Effects of mutations to streptomycin resistance on the rate of translation of mutant genetic information. J Bacteriol. 1966 Mar;91(3):1021–1028. doi: 10.1128/jb.91.3.1021-1028.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gesteland R. F. Isolation and characterization of ribonuclease I mutants of Escherichia coli. J Mol Biol. 1966 Mar;16(1):67–84. doi: 10.1016/s0022-2836(66)80263-2. [DOI] [PubMed] [Google Scholar]
- Gorini L., Rosset R., Zimmermann R. A. Phenotype masking and streptomycin dependence. Science. 1967 Sep 15;157(3794):1314–1317. doi: 10.1126/science.157.3794.1314. [DOI] [PubMed] [Google Scholar]
- Gorini L. The action of streptomycin on protein synthesis in vivo. Bull N Y Acad Med. 1966 Aug;42(8):633–637. [PMC free article] [PubMed] [Google Scholar]
- Gorini L. The contrasting role of strA and ram gene products in ribosomal functioning. Cold Spring Harb Symp Quant Biol. 1969;34:101–109. doi: 10.1101/sqb.1969.034.01.016. [DOI] [PubMed] [Google Scholar]
- Kuwano M., Endo H. Phenotypic suppression by streptomycin of amber mutants in the ribonucleic Acid bacteriophage coat protein cistron. J Virol. 1969 Sep;4(3):252–255. doi: 10.1128/jvi.4.3.252-255.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwano M., Ishizawa M., Endo H. Su-II-specific restriction of amber suppression by mutation to streptomycin resistance. J Mol Biol. 1968 Apr 28;33(2):513–516. doi: 10.1016/0022-2836(68)90209-x. [DOI] [PubMed] [Google Scholar]
- LEDERBERG E. M., CAVALLI-SFORZA L., LEDERBERG J. INTERACTION OF STREPTOMYCIN AND A SUPPRESSOR FOR GALACTOSE FERMENTATION IN E. COLI K-12. Proc Natl Acad Sci U S A. 1964 Apr;51:678–682. doi: 10.1073/pnas.51.4.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEDERBERG S. Suppression of the multiplication of heterologous bacteriophages in lysogenic bacteria. Virology. 1957 Jun;3(3):496–513. doi: 10.1016/0042-6822(57)90006-5. [DOI] [PubMed] [Google Scholar]
- Old D., Gorini L. Amino acid changes provoked by streptomycin in a polypeptide synthesized in vitro. Science. 1965 Dec 3;150(3701):1290–1292. doi: 10.1126/science.150.3701.1290. [DOI] [PubMed] [Google Scholar]
- Otsuji N., Aono H. Effect of mutation to streptomycin resistance on amber suppressor genes. J Bacteriol. 1968 Jul;96(1):43–50. doi: 10.1128/jb.96.1.43-50.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz J. H. An effect of streptomycin on the biosynthesis of the coat protein of coliphage f2 by extract of E. coli. Proc Natl Acad Sci U S A. 1965 May;53(5):1133–1140. doi: 10.1073/pnas.53.5.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strigini P., Gorini L. Ribosomal mutations affecting efficiency of amber suppression. J Mol Biol. 1970 Feb 14;47(3):517–530. doi: 10.1016/0022-2836(70)90319-0. [DOI] [PubMed] [Google Scholar]
- THOMAS R., LAMBERT L. On the occurrence of bacterial mutations permitting lysogenization by clear variants of temperate bacteriophages. J Mol Biol. 1962 Sep;5:373–374. doi: 10.1016/s0022-2836(62)80079-5. [DOI] [PubMed] [Google Scholar]
- VALENTIN R. C., ZINDER N. D. PHENOTYPIC REPAIR OF RNA-BACTERIOPHAGE MUTANTS BY STREPTOMYCIN. Science. 1964 Jun 19;144(3625):1458–1459. doi: 10.1126/science.144.3625.1458. [DOI] [PubMed] [Google Scholar]
- Walter H., Krob E. J., Brooks D. E. Membrane surface properties other than charge involved in cell separation by partition in polymer, aqueous two-phase systems. Biochemistry. 1976 Jul 13;15(14):2959–2964. doi: 10.1021/bi00659a004. [DOI] [PubMed] [Google Scholar]
- Walter H. Partition of cells in two-polymer aqueous phases: a method forseparating cells and for obtaining information on their surface properties. Methods Cell Biol. 1975;9(0):25–50. doi: 10.1016/s0091-679x(08)60067-9. [DOI] [PubMed] [Google Scholar]
- Wayne L. G., Walter H. Separation of erythromycin-resistant and -susceptible subpopulations of Escherichia coli 15 by partition in two-polymer aqueous phases. Antimicrob Agents Chemother. 1974 Mar;5(3):203–209. doi: 10.1128/aac.5.3.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
