Abstract
The mercury and antibiotic resistance of 338 strains of Escherichia coli isolated from hospital patients was determined. Resistance to mercury was found in 58.6% of the isolates. The frequencies of resistance to streptomycin (Sm), tetracycline (Tc), chloramphenicol (Cm), kanamycin (Kan), cephaloridine (Cer), and gentamicin (Gm) were 66.3, 60.3, 56.5, 42.9, 32.1, and 1.5%, respectively. Among the above, 198 mercury- and antibiotic-resistant isolates were selected and tested for their ability to transfer the resistance to susceptible strains of E. coli K-12 and Klebsiella pneumoniae JK5. R plasmids carrying mercury resistance were demonstrated in 89.9% of the mercury-resistant strains of E. coli. Furthermore, R(Hg,Sm,Tc,Cm) plasmids were demonstrated most frequently, followed by R(Hg,Sm,Tc,Cm,Kan), R(Hg,Cm,Kan), and R(Hg,Sm,Tc,Cm,Kan,Cer) plasmids.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben-Bassat D., Shelef G., Gruner N., Shuval H. I. Growth of Chlamydomonas in a medium containing mercury. Nature. 1972 Nov 3;240(5375):43–44. doi: 10.1038/240043a0. [DOI] [PubMed] [Google Scholar]
- Curtiss R., 3rd Bacterial conjugation. Annu Rev Microbiol. 1969;23:69–136. doi: 10.1146/annurev.mi.23.100169.000441. [DOI] [PubMed] [Google Scholar]
- Curtiss R., 3rd, Charamella L. J., Stallions D. R., Mays J. A. Parental functions during conjugation in Escherichia coli K-12. Bacteriol Rev. 1968 Dec;32(4 Pt 1):320–348. [PMC free article] [PubMed] [Google Scholar]
- Datta N., Hedges R. W. Compatibility groups among fi - R factors. Nature. 1971 Nov 26;234(5326):222–223. doi: 10.1038/234222a0. [DOI] [PubMed] [Google Scholar]
- Hamdy M. K., Noyes O. R. Formation of methyl mercury by bacteria. Appl Microbiol. 1975 Sep;30(3):424–432. doi: 10.1128/am.30.3.424-432.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirayama K., Takahashi H. Studies on the treatment for methyl mercury poisoning "lowering of the methyl mercury content in the poisoned animal brain". Kumamoto Med J. 1970 Jun 30;23(2):56–64. [PubMed] [Google Scholar]
- Kondo I., Ishikawa T., Nakahara H. Mercury and cadmium resistances mediated by the penicillinase plasmid in Staphylococcus aureus. J Bacteriol. 1974 Jan;117(1):1–7. doi: 10.1128/jb.117.1.1-7.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitra R. S., Gray R. H., Chin B., Bernstein I. A. Molecular mechanisms of accommodation in Escherichia coli to toxic levels of Cd2+. J Bacteriol. 1975 Mar;121(3):1180–1188. doi: 10.1128/jb.121.3.1180-1188.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson J. D., Blair W., Brinckman F. E., Colwell R. R., Iverson W. P. Biodegradation of phenylmercuric acetate by mercury-resistant bacteria. Appl Microbiol. 1973 Sep;26(3):321–326. doi: 10.1128/am.26.3.321-326.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novick R. P., Roth C. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J Bacteriol. 1968 Apr;95(4):1335–1342. doi: 10.1128/jb.95.4.1335-1342.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHMOND M. H., JOHN M. CO-TRANSDUCTION BY A STAPHYLOCOCCAL PHAGE OF THE GENES RESPONSIBLE FOR PENICILLINASE SYNTHESIS AND RESISTANCE TO MERCURY SALTS. Nature. 1964 Jun 27;202:1360–1361. doi: 10.1038/2021360a0. [DOI] [PubMed] [Google Scholar]
- STUTZENBERGER F. J., BENNETT E. O. SENSITIVITY OF MIXED POPULATIONS OF STAPHYLOCOCCUS AUREUS AND ESCHERICHIA COLI TO MERCURIALS. Appl Microbiol. 1965 Jul;13:570–574. doi: 10.1128/am.13.4.570-574.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schottel J., Mandal A., Clark D., Silver S., Hedges R. W. Volatilisation of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature. 1974 Sep 27;251(5473):335–337. doi: 10.1038/251335a0. [DOI] [PubMed] [Google Scholar]
- Smith D. H. R factors mediate resistance to mercury, nickel, and cobalt. Science. 1967 May 26;156(3778):1114–1116. doi: 10.1126/science.156.3778.1114. [DOI] [PubMed] [Google Scholar]
- Summers A. O., Silver S. Mercury resistance in a plasmid-bearing strain of Escherichia coli. J Bacteriol. 1972 Dec;112(3):1228–1236. doi: 10.1128/jb.112.3.1228-1236.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takizawa Y., Kosaka T., Sugai R., Sasagawa I., Sekiguchi C. Studies on the cause of the Niigata episode of Minamata disease outbreak. Acta Med Biol (Niigata) 1972 Mar;19(3):193–206. [PubMed] [Google Scholar]
- Tanaka T., Kobayashi A., Ikemura K., Hashimoto H., Mitsuhashi S. Drug resistance and distribution of R factors among Escherichia coli strains. Jpn J Microbiol. 1974 Sep;18(5):343–347. doi: 10.1111/j.1348-0421.1974.tb00820.x. [DOI] [PubMed] [Google Scholar]
- Tonomura K., Maeda K., Futai F., Nakagami T., Yamada M. Stimulative vaporization of phenylmercuric acetate by mercury-resistant bacteria. Nature. 1968 Feb 17;217(5129):644–646. doi: 10.1038/217644b0. [DOI] [PubMed] [Google Scholar]
- Vaituzis Z., Nelson J. D., Jr, Wan L. W., Colwell R. R. Effects of mercuric chloride on growth and morphology of selected strains of mercury-resistant bacteria. Appl Microbiol. 1975 Feb;29(2):275–286. doi: 10.1128/am.29.2.275-286.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATANABE T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev. 1963 Mar;27:87–115. doi: 10.1128/br.27.1.87-115.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood J. M., Kennedy F. S., Rosen C. G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature. 1968 Oct 12;220(5163):173–174. doi: 10.1038/220173a0. [DOI] [PubMed] [Google Scholar]