Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1977 Jul;12(1):4–10. doi: 10.1128/aac.12.1.4

Differential Susceptibility of Spleen Focus-Forming Virus and Murine Leukemia Viruses to Ansamycin Antibiotics

Julius S Horoszewicz 1, Susan S Leong 1, William A Carter 1
PMCID: PMC352145  PMID: 18986

Abstract

The streptovaricin complex (SvCx) and rifamycin SV derivatives display potent antiviral activity against the polycythemic strain of Friend leukemia virus (FV-P), as measured by a reduction in the number of spleen foci produced in mice. Such reductions may be explained by inactivation of functions of (i) the spleen focus-forming virus (SFFV), (ii) its “helper” murine leukemia virus (MuLV), or (iii) both viruses normally present in FV-P. We noted that preincubation of FV-P with fractionation products of SvCx, or derivatives of rifamycin SV, at low concentrations (3 to 5 μg/ml) reduces the number of spleen foci 80 to 97%, whereas titers of MuLV (from the same inoculum) remain unaffected (MuLV titers were measured by XC, S+L, and “helper activity” assays). Our findings indicate a remarkable biological selectivity of ansamycins, as well as nonansamycin components of SvCx, against the transforming and defective spleen focus-forming virus as compared to MuLV. Thus, the drugs might be useful in distinguishing other types of oncornaviruses.

Full text

PDF
4

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrad A. A., Thomson S. Radiosensitivity and growth of Friend leukemia virus studied with the spleen focus assay method. Int J Cancer. 1969 Mar 15;4(2):179–193. doi: 10.1002/ijc.2910040208. [DOI] [PubMed] [Google Scholar]
  2. Bassin R. H., Tuttle N., Fischinger P. J. Rapid cell culture assay technic for murine leukaemia viruses. Nature. 1971 Feb 19;229(5286):564–566. doi: 10.1038/229564b0. [DOI] [PubMed] [Google Scholar]
  3. Bissell M. J., Hatie C., Tischler A. N., Calvin M. Preferential inhibition of the growth of virus-transformed cells in culture by rifazone-82, a new rifamycin derivative. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2520–2524. doi: 10.1073/pnas.71.6.2520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borden E. C., Brockman W. W., Carter W. A. Selective inhibition by streptovaricin of splenomegaly induced Rauscher leukaemia by virus. Nat New Biol. 1971 Aug;232(33):214–216. doi: 10.1038/newbio232214a0. [DOI] [PubMed] [Google Scholar]
  5. Borden E. C., Carter W. A., Sensenbrenner L. L., Owens A. H., Lichtenstein J., Gray G. D., Neil G. L., Nichol F. R., Li L. H. Inhibition by streptovaricins of Rauscher leukemia virus splenomegaly. Int J Cancer. 1974 Dec 15;14(6):817–825. doi: 10.1002/ijc.2910140616. [DOI] [PubMed] [Google Scholar]
  6. Brockman W. W., Carter W. A., Li L. H., Reusser F., Nichol F. R. Streptovaricins inhibit RNA dependent DNA polymerase present in an oncogenic RNA virus. Nature. 1971 Mar 26;230(5291):249–250. doi: 10.1038/230249a0. [DOI] [PubMed] [Google Scholar]
  7. Calvin M., Joss U. R., Hackett A. J., Owens R. B. Effect of rifampicin and two of its derivatives on cells infected with Moloney sarcoma virus. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1441–1443. doi: 10.1073/pnas.68.7.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carter W. A., Brockman W. W., Borden E. C. Streptovaricins inhibit focus formation by MSV (MLV) complex. Nat New Biol. 1971 Aug;232(33):212–214. doi: 10.1038/newbio232212a0. [DOI] [PubMed] [Google Scholar]
  9. Fischinger P. J., Nomura S., Peebles P. T., Haapala D. K., Bassin R. H. Reversion of murine sarcoma virus transformed mouse cells: variants without a rescuable sarcoma virus. Science. 1972 Jun 2;176(4038):1033–1035. doi: 10.1126/science.176.4038.1033. [DOI] [PubMed] [Google Scholar]
  10. Green M., Bragdon J., Rankin A. 3-Cyclic amine derivatives of rifamycin: strong inhibitors of the DNA polymerase activity of RNA tumor viruses. Proc Natl Acad Sci U S A. 1972 May;69(5):1294–1298. doi: 10.1073/pnas.69.5.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gurgo C., Ray R., Green M. Rifamycin derivatives strongly inhibiting RNA leads to DNA polymerase (reverse transcriptase) of murine sarcoma viruses. J Natl Cancer Inst. 1972 Jul;49(1):61–79. [PubMed] [Google Scholar]
  12. Hartley J. W., Rowe W. P. Production of altered cell foci in tissue culture by defective Moloney sarcoma virus particles. Proc Natl Acad Sci U S A. 1966 Apr;55(4):780–786. doi: 10.1073/pnas.55.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horoszewicz J. S., Leong S. S., Byrd D. M., Carter W. A. Antivirion effects of streptovaricin complex against Friend virus. Antimicrob Agents Chemother. 1974 Nov;6(5):594–597. doi: 10.1128/aac.6.5.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horoszewicz J. S., Rinehart K. L., Jr, Leong S. S., Carter W. A. Activity of pure streptovaricins and fractionated streptovaricin complex against Friend virus. Antimicrob Agents Chemother. 1975 Mar;7(3):281–284. doi: 10.1128/aac.7.3.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jainchill J. L., Aaronson S. A., Todaro G. J. Murine sarcoma and leukemia viruses: assay using clonal lines of contact-inhibited mouse cells. J Virol. 1969 Nov;4(5):549–553. doi: 10.1128/jvi.4.5.549-553.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leete E., Chedekel M. R. Tritium in deuterated compounds. Nature. 1972 Mar 24;236(5343):166–167. doi: 10.1038/236166c0. [DOI] [PubMed] [Google Scholar]
  17. O'Connor T. E., Schiop-Stansly P., Sethi V. S., Hadidi A., Okano P. Antiviral antibiotics: inhibition of focus-formation in human or mouse cell cultures by sarcoma-inducing oncornaviruses with rifamycins. Intervirology. 1974;3(1-2):63–83. doi: 10.1159/000149743. [DOI] [PubMed] [Google Scholar]
  18. Riva S., Fietta A., Silvestri L. G. Mechanism of action of a rifamycin derivative (AF-013) which is active on the nucleic acid polymerases insensitive to rifampicin. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1263–1271. doi: 10.1016/0006-291x(72)90604-3. [DOI] [PubMed] [Google Scholar]
  19. Riva S., Silvestri L. G. Rifamycins: a general view. Annu Rev Microbiol. 1972;26:199–224. doi: 10.1146/annurev.mi.26.100172.001215. [DOI] [PubMed] [Google Scholar]
  20. Robinson H. L., Robinson W. S. Inhibition of growth of uninfected and rous sarcoma virus-infected chick-embryo fibroblasts by rifampicin. J Natl Cancer Inst. 1971 Apr;46(4):785–788. [PubMed] [Google Scholar]
  21. Rowe W. P., Pugh W. E., Hartley J. W. Plaque assay techniques for murine leukemia viruses. Virology. 1970 Dec;42(4):1136–1139. doi: 10.1016/0042-6822(70)90362-4. [DOI] [PubMed] [Google Scholar]
  22. Steeves R. A., Eckner R. J., Mirand E. A., Priore R. L. Rapid assay of murine leukemia virus helper activity for Friend spleen focus-forming virus. J Natl Cancer Inst. 1971 Jun;46(6):1219–1228. [PubMed] [Google Scholar]
  23. Thompson F. M., Tischler A. N., Adams J., Calvin M. Inhibition of three nucleotide polymerases by rifamycin derivatives. Proc Natl Acad Sci U S A. 1974 Jan;71(1):107–109. doi: 10.1073/pnas.71.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ting R. C., Yang S. S., Gallo R. C. Reverse transcriptase, RNA tumour virus transformation and derivatives of rifamycin SV. Nat New Biol. 1972 Apr 12;236(67):163–166. doi: 10.1038/newbio236163a0. [DOI] [PubMed] [Google Scholar]
  25. Vaheri A., Hanafusa H. Effect of rifampicin and a derivative on cells transformed by Rous sarcoma virus. Cancer Res. 1971 Dec;31(12):2032–2036. [PubMed] [Google Scholar]
  26. Wu A. M., Ting R. C., Gallo R. C. RNA-directed DNA polymerase and virus-induced leukemia in mice. Proc Natl Acad Sci U S A. 1973 May;70(5):1298–1302. doi: 10.1073/pnas.70.5.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES