Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1978 Jan;13(1):104–114. doi: 10.1128/aac.13.1.104

Actinomycin Biosynthesis by Protoplasts Derived from Streptomyces parvulus

Michael J M Hitchcock 1, Edward Katz 1
PMCID: PMC352192  PMID: 75712

Abstract

Conditions are described for the formation of protoplasts from Streptomyces parvulus that are able to synthesize actinomycin D de novo. Antibiotic synthesis by protoplasts, in contrast to that by mycelium, was sensitive to inhibition by actinomycin D and to a decrease in sucrose concentration. On the other hand, synthesis by mycelium was much more sensitive to inhibition by amino acid analogs (d-valine, cis-3-methylproline, and α-methyl-dl-tryptophan). In addition, the uptake of amino acids (l-methionine, sarcosine, and l- and d-valine) by protoplasts was significantly lower than that by mycelium. The advantages and limitations of using protoplasts for studying in vivo actinomycin synthesis are discussed.

Full text

PDF
104

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi K., Kubota K., Kurahashi K. Biosynthesis of enzyme-bound formylvaline and formylvalylglycine. A possible initiation complex for gramicidin A biosynthesis. J Biochem. 1977 Jan;81(1):269–272. doi: 10.1093/oxfordjournals.jbchem.a131446. [DOI] [PubMed] [Google Scholar]
  2. Bauer K., Roskoski R., Jr, Kleinkauf H., Lipmann F. Synthesis of a linear gramicidin by a combination of biosynthetic and organic methods. Biochemistry. 1972 Aug 15;11(17):3266–3271. doi: 10.1021/bi00767a022. [DOI] [PubMed] [Google Scholar]
  3. Beaven V., Barchas J., Katz E., Weissbach H. Studies on the inhibition of actinomycin biosynthesis by D-valine. J Biol Chem. 1967 Feb 25;242(4):657–660. [PubMed] [Google Scholar]
  4. Cella R., Vining L. C. Rsistance to streptomycin in a producing strain of Streptomyces griseus. Can J Microbiol. 1975 Apr;21(4):463–472. doi: 10.1139/m75-065. [DOI] [PubMed] [Google Scholar]
  5. Ciferri O., Albertini A., Cassani G. Incorporation of sarcosine into the actinomycins synthesized by Streptomyces antibioticus. Biochem J. 1964 Jan;90(1):82–92. doi: 10.1042/bj0900082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ciferri O., Albertini A., Cassani G. Origin of the sarcosine molecules of actinomycins. Biochem J. 1965 Sep;96(3):853–861. doi: 10.1042/bj0960853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Demain A. L. How do antibiotic-producing microorganisms avoid suicide? Ann N Y Acad Sci. 1974 May 10;235(0):601–612. doi: 10.1111/j.1749-6632.1974.tb43294.x. [DOI] [PubMed] [Google Scholar]
  8. Fodor K., Alföldi L. Fusion of protoplasts of Bacillus megaterium. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2147–2150. doi: 10.1073/pnas.73.6.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Froyshov O. Biosynthesis of bacitracin on a protein thiotemplate. Acta Microbiol Acad Sci Hung. 1975;22(4):427–432. [PubMed] [Google Scholar]
  10. Froyshov O., Laland S. G. On the biosynthesis of bacitracin by a soluble enzyme complex from Bacillus licheniformis. Eur J Biochem. 1974 Jul 15;46(2):235–242. doi: 10.1111/j.1432-1033.1974.tb03616.x. [DOI] [PubMed] [Google Scholar]
  11. Fujikawa K., Suzuki T., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. I. Preparation of partially purified enzyme system and its properties. Biochim Biophys Acta. 1968 Jun 18;161(1):232–246. doi: 10.1016/0005-2787(68)90313-4. [DOI] [PubMed] [Google Scholar]
  12. Gerdes R. G., Strickland K. P., Rosenberg H. Restoration of phosphate transport by the phosphate-binding protein in spheroplasts of Escherichia coli. J Bacteriol. 1977 Aug;131(2):512–518. doi: 10.1128/jb.131.2.512-518.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Golub E. E., Ward M. A., Nishimura J. S. Biosynthesis of the actinomycin chromophore: incorporation of 3-hydroxy-4-methylanthranilic acid into actinomycins by Streptomyces antibioticus. J Bacteriol. 1969 Nov;100(2):977–984. doi: 10.1128/jb.100.2.977-984.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heppel L. A. Selective release of enzymes from bacteria. Science. 1967 Jun 16;156(3781):1451–1455. doi: 10.1126/science.156.3781.1451. [DOI] [PubMed] [Google Scholar]
  15. Hopwood D. A., Wright H. M., Bibb M. J., Cohen S. N. Genetic recombination through protoplast fusion in Streptomyces. Nature. 1977 Jul 14;268(5616):171–174. doi: 10.1038/268171a0. [DOI] [PubMed] [Google Scholar]
  16. Ishihara H., Sasaki T., Shimura K. Biosynthesis of bacitracin. II. Incorporation of 14C-labeled amino acids into bacitracin by a cell-free preparation from Bacillus licheniformis. Biochim Biophys Acta. 1968 Sep 24;166(2):496–504. [PubMed] [Google Scholar]
  17. K'ominek L. A. Cycloheximide production by Streptomyces griseus: control mechanisms of cycloheximide biosynthesis. Antimicrob Agents Chemother. 1975 Jun;7(6):856–856. doi: 10.1128/aac.7.6.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KATZ E. Inhibition of actinomycin synthesis by D-valine. Nature. 1959 Nov 21;184(Suppl 21):1666–1668. doi: 10.1038/1841666a0. [DOI] [PubMed] [Google Scholar]
  19. KATZ E., WEISSBACH H. Incorporation of C14-labeled amino acids into actinomycin and protein by Streptomyces antibioticus. J Biol Chem. 1963 Feb;238:666–675. [PubMed] [Google Scholar]
  20. Katz E., Demain A. L. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev. 1977 Jun;41(2):449–474. doi: 10.1128/br.41.2.449-474.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Katz E., Krapohl N., Mauger A., Weissbach H., Yoshida T. Kinetics of 3-methyloproline inhibition of actinomycin biosynthesis. Arch Biochem Biophys. 1968 Nov;128(2):534–553. doi: 10.1016/0003-9861(68)90061-1. [DOI] [PubMed] [Google Scholar]
  22. Kurylo-Borowska Z., Sedkowska J. Biosynthesis of edeine. Fractionation and characterization of enzymes responsible for biosynthesis of edeine A and B. Biochim Biophys Acta. 1974 May 10;351(1):42–56. [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Lipmann F. Attempts to map a process evolution of peptide biosynthesis. Science. 1971 Sep 3;173(4000):875–884. doi: 10.1126/science.173.4000.875. [DOI] [PubMed] [Google Scholar]
  25. Lipmann F., Gevers W., Kleinkauf H., Roskoski R., Jr Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. Adv Enzymol Relat Areas Mol Biol. 1971;35:1–34. doi: 10.1002/9780470122808.ch1. [DOI] [PubMed] [Google Scholar]
  26. Mason K. T., Shaw G. J., Katz E. Biosynthetic studies with L-[2,3-3H2] valine as precursor of the D-valine moiety in actinomycin. Arch Biochem Biophys. 1977 Apr 30;180(2):509–513. doi: 10.1016/0003-9861(77)90066-2. [DOI] [PubMed] [Google Scholar]
  27. Meienhofer J., Atherton E. Structure-activity relationships in the actinomycins. Adv Appl Microbiol. 1973;16:203–300. [PubMed] [Google Scholar]
  28. Okanishi M., Suzuki K., Umezawa H. Formation and reversion of Streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol. 1974 Feb;80(2):389–400. doi: 10.1099/00221287-80-2-389. [DOI] [PubMed] [Google Scholar]
  29. Roland I., Froyshov O. On the presence of pantothenic acid in the three complementary enzymes of bacitracin synthetase. FEBS Lett. 1975 Dec 15;60(2):305–308. doi: 10.1016/0014-5793(75)80736-8. [DOI] [PubMed] [Google Scholar]
  30. Roskoski R., Jr, Gevers W., Kleinkauf H., Lipmann F. Tyrocidine biosynthesis by three complementary fractions from Bacillus brevis (ATCC 8185). Biochemistry. 1970 Dec 8;9(25):4839–4845. doi: 10.1021/bi00827a002. [DOI] [PubMed] [Google Scholar]
  31. SIVAK A., KATZ E. Biosynthesis of the actinomycin chromophore. Influence of alpha-, 4-, 5-, and 6-methyl-DL-tryptophan on actinomycin synthesis. Biochim Biophys Acta. 1962 Jul 30;62:80–90. doi: 10.1016/0006-3002(62)90493-6. [DOI] [PubMed] [Google Scholar]
  32. SIVAK A., MELONI M. L., NOBILI F., KATZ E. Biosynthesis of the actinomycin chromophore. Studies with DL-[7alpha-14C] tryptophan and L-[Me-14C] methionine. Biochim Biophys Acta. 1962 Feb 26;57:283–289. doi: 10.1016/0006-3002(62)91121-6. [DOI] [PubMed] [Google Scholar]
  33. Salzman L., Weissbach H., Katz E. Enzymatic synthesis of actinocinyl peptides. Arch Biochem Biophys. 1969 Mar;130(1):536–546. doi: 10.1016/0003-9861(69)90067-8. [DOI] [PubMed] [Google Scholar]
  34. Schaeffer P., Cami B., Hotchkiss R. D. Fusion of bacterial protoplasts. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2151–2155. doi: 10.1073/pnas.73.6.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Snoke J. E. FORMATION OF BACITRACIN BY PROTOPLASTS OF BACILLUS LICHENIFORMIS. J Bacteriol. 1961 Jun;81(6):986–989. doi: 10.1128/jb.81.6.986-989.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Williams W. K., Katz E. Development of a chemically defined medium for the synthesis of actinomycin D by Streptomyces parvulus. Antimicrob Agents Chemother. 1977 Feb;11(2):281–290. doi: 10.1128/aac.11.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yoshida T., Mauger A., Witkop B., Katz E. Influence of methylproline isomers upon actinomycin biosynthesis. Biochem Biophys Res Commun. 1966 Oct 5;25(1):66–72. doi: 10.1016/0006-291x(66)90641-3. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES