Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1978 Feb;13(2):146–153. doi: 10.1128/aac.13.2.146

Physiological Conditions Affecting Staphylococcus aureus Susceptibility to Staphylococcin 1580

A Weerkamp 1, G D Vogels 1
PMCID: PMC352204  PMID: 25615

Abstract

Loss of salt tolerance, irreversible loss of viability, inhibition of l-glutamic acid uptake and effects on the high energy state of the membrane were used as parameters to measure the injury induced by staphylococcin 1580, a bacteriocin of Staphylococcus epidermidis, in susceptible cells of Staphylococcus aureus Oxford 209P. A small part of a growing cell population appeared to be temporarily resistant to the bacteriocin, and the cells were arrested in this stage when suspended in buffer. The proportion of susceptible cells may rapidly shift during exponential growth, apparently concomitantly with a change in cell metabolism. Glucose- and pyruvate-grown cells were equally susceptible to salts after staphylococcin treatment. Only in pyruvate-grown cells was amino acid uptake strongly inhibited, and the membrane potential was abolished after a short lag time. Also, irreversible killing was more distinct in pyruvate-grown cells. The proton gradient across the cell membrane was only slightly disturbed in both types of cells. Specific inhibitors of the energy metabolism revealed that the high energy state of the membrane was largely supported by hydrolysis of adenosine 5′-triphosphate in glucose-grown cells, whereas the oxidative input through electron transport appeared to be relatively more important in pyruvate-grown cells. Staphylococcin 1580 affected primarily the oxidative energy metabolism, although electron transport is not inhibited. Below a distinct incubation temperature cells were completely resistant to the action of the bacteriocin. Varying the growth temperature had only a slight effect on the transition temperature, but growth in the presence of Tween 80, which greatly enhanced the proportion of unsaturated fatty acids, decreased the transition temperature.

Full text

PDF
146

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharyya P., Shapiro S. A., Barnes E. M., Jr Generation of a transmembrane electric potential during respiration by Azotobacter vinelandii membrand vesicles. J Bacteriol. 1977 Feb;129(2):756–762. doi: 10.1128/jb.129.2.756-762.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brewer G. J. The state of energization of the membrane of Escherichia coli as affected by physiological conditions and colicin K. Biochemistry. 1976 Apr 6;15(7):1387–1392. doi: 10.1021/bi00652a006. [DOI] [PubMed] [Google Scholar]
  3. Cramer W. A., Phillips S. K., Keenan T. W. On the role of membrane phase in the transmission mechanism of colicin E1. Biochemistry. 1973 Mar 13;12(6):1177–1181. doi: 10.1021/bi00730a025. [DOI] [PubMed] [Google Scholar]
  4. Dajani A. S., Gray E. D., Wannamaker L. W. Effect of Bactericidal Substance from Staphylococcus aureus on Group A Streptococci I. Biochemical Alterations. Infect Immun. 1970 May;1(5):485–490. doi: 10.1128/iai.1.5.485-490.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dietz G. W. Dehydrogenase activity involved in the uptake of glucose 6-phosphate by a bacterial membrane system. J Biol Chem. 1972 Jul 25;247(14):4561–4565. [PubMed] [Google Scholar]
  6. Fields K. L., Luria S. E. Effects of colicins E1 and K on transport systems. J Bacteriol. 1969 Jan;97(1):57–63. doi: 10.1128/jb.97.1.57-63.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jetten A. M., Jetten M. E. Energy requirement for the initiation of colicin action in Escherichia coli. Biochim Biophys Acta. 1975 Apr 14;387(1):12–22. doi: 10.1016/0005-2728(75)90048-1. [DOI] [PubMed] [Google Scholar]
  9. Jetten A. M., Vogels G. D. Characteristics of the killing effect of a Staphylococcus epidermidis bacteriocin. Antonie Van Leeuwenhoek. 1974;40(1):177–183. doi: 10.1007/BF00394565. [DOI] [PubMed] [Google Scholar]
  10. Jetten A. M., Vogels G. D. Effects of colicin A and staphylococcin 1580 on amino acid uptake into membrane vesicles of Escherichia coli and staphylococcus aureus. Biochim Biophys Acta. 1973 Jul 18;311(4):483–495. doi: 10.1016/0005-2736(73)90124-7. [DOI] [PubMed] [Google Scholar]
  11. Jetten A. M., Vogels G. D. Mode of action of a Staphylococcus epidermidis bacteriocin. Antimicrob Agents Chemother. 1972 Dec;2(6):456–463. doi: 10.1128/aac.2.6.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jetten A. M., Vogels G. D. Nature and properties of a Staphylococcus epidermidis bacteriocin. J Bacteriol. 1972 Oct;112(1):243–250. doi: 10.1128/jb.112.1.243-250.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jetten A. M., Vogels G. D., de Windt F. Production and purification of a Staphylococcus epidermidis bacteriocin. J Bacteriol. 1972 Oct;112(1):235–242. doi: 10.1128/jb.112.1.235-242.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kashket E. R., Wilson T. H. Protonmotive force in fermenting Streptococcus lactis 7962 in relation to sugar accumulation. Biochem Biophys Res Commun. 1974 Aug 5;59(3):879–886. doi: 10.1016/s0006-291x(74)80061-6. [DOI] [PubMed] [Google Scholar]
  15. Laris P. C., Pershadsingh H. A. Estimations of membrane potentials in Streptococcus faecalis by means of a fluorescent probe. Biochem Biophys Res Commun. 1974 Apr 8;57(3):620–626. doi: 10.1016/0006-291x(74)90591-9. [DOI] [PubMed] [Google Scholar]
  16. Mitchell P. Performance and conservation of osmotic work by proton-coupled solute porter systems. J Bioenerg. 1973 Jan;4(1):63–91. doi: 10.1007/BF01516051. [DOI] [PubMed] [Google Scholar]
  17. Okamoto K. Requirement of heat and metabolic energy for the expression of inhibitory action of colicin K. Biochim Biophys Acta. 1975 May 6;389(2):370–379. doi: 10.1016/0005-2736(75)90329-6. [DOI] [PubMed] [Google Scholar]
  18. Plate C. A. Effects of temperature and of fatty acid substitutions on colicin K action. Antimicrob Agents Chemother. 1973 Jul;4(1):16–24. doi: 10.1128/aac.4.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Plate C. A., Luria S. E. Stages in colicin K action, as revealed by the action of trypsin. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2030–2034. doi: 10.1073/pnas.69.8.2030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tagg J. R., Dajani A. S., Wannamaker L. W. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 1976 Sep;40(3):722–756. doi: 10.1128/br.40.3.722-756.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tagg J. R., Dajani A. S., Wannamaker L. W., Gray E. D. Group A streptococcal bacteriocin. Production, purification, and mode of action. J Exp Med. 1973 Nov 1;138(5):1168–1183. doi: 10.1084/jem.138.5.1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WADDELL W. J., BUTLER T. C. Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO); application to skeletal muscle of the dog. J Clin Invest. 1959 May;38(5):720–729. doi: 10.1172/JCI103852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Waggoner A. Optical probes of membrane potential. J Membr Biol. 1976 Jun 30;27(4):317–334. doi: 10.1007/BF01869143. [DOI] [PubMed] [Google Scholar]
  24. Weerkamp A., Geerts W., Vogels G. D. Conditional killing effect of staphylococcin 1580 and repair of sublethal injury in Staphylococcus aureus. Antimicrob Agents Chemother. 1977 Sep;12(3):314–321. doi: 10.1128/aac.12.3.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weerkamp A., Heinen W. Effect of temperature on the fatty acid composition of the extreme thermophiles, Bacillus caldolyticus and Bacillus caldotenax. J Bacteriol. 1972 Jan;109(1):443–446. doi: 10.1128/jb.109.1.443-446.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES