Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1978 Mar;13(3):435–440. doi: 10.1128/aac.13.3.435

Study of ansamycin inhibition of a ribonucleic acid-directed deoxyribonucleic acid polymerase by an immobilized template assay.

B I Milavetz, J S Horoszewicz, K L Rinehart Jr, W A Carter
PMCID: PMC352260  PMID: 95661

Abstract

A series of structurally related ansamycins have been analyzed, in a new immobilized template assay, to determine the mechanism by which they inhibit a ribonucleic acid-directed deoxyribonucleic acid (DNA) polymerase from Moloney murine leukemia virus. By this assay, we can better correlate specific structures of these drugs with inhibitory mechanisms. Using an immobilized template, we were also able to observe drug effects on the stability of complexes formed between the polymerase, a template (polyadenylic acid-agarose), and a primer, as well as to monitor the synthesis of DNA in the presence of drug. For each drug, we determined the complex (intermediate in DNA synthesis) which was primarily affected and whether the effect was due to a destabilization process. Although the activity and specificity of the unsubstituted ansamycins (streptovaricins and rifamycin SV) were modulated by conformation of the molecule and electron density of the aromatic ring, the principal mode of inhibition is, apparently, drug binding to a polymerase-template complex; the drug binds in a manner which prevents subsequent formation of a polymerase-template-primer complex. However, some derivatives of rifamycin SV, when substituted at carbon-3 with bulky or hydrophobic side chains, displayed markedly different modes of action. For example, demethyl dimethyl rifampin prevented the formation of polymerase-template complexes, whereas rifazacyclo 16 acted by promoting the dissociation of polymerase-template-primer complexes.

Full text

PDF
435

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970 Jun 27;226(5252):1209–1211. doi: 10.1038/2261209a0. [DOI] [PubMed] [Google Scholar]
  2. Brockman W. W., Carter W. A., Li L. H., Reusser F., Nichol F. R. Streptovaricins inhibit RNA dependent DNA polymerase present in an oncogenic RNA virus. Nature. 1971 Mar 26;230(5291):249–250. doi: 10.1038/230249a0. [DOI] [PubMed] [Google Scholar]
  3. Byrnes J. J., Downey K. M., Esserman L., So A. G. Mechanism of hemin inhibition of erythroid cytoplasmic DNA polymerase. Biochemistry. 1975 Feb 25;14(4):796–799. doi: 10.1021/bi00675a023. [DOI] [PubMed] [Google Scholar]
  4. Carter W. A., Brockman W. W., Borden E. C. Streptovaricins inhibit focus formation by MSV (MLV) complex. Nat New Biol. 1971 Aug;232(33):212–214. doi: 10.1038/newbio232212a0. [DOI] [PubMed] [Google Scholar]
  5. Carter W. A., Pitha P., Brockman W. W., Borden E. C., Marshall L. W. Selective inhibition of viral functions: the antiviral action of interferon and streptovaricin. Medicine (Baltimore) 1972 May;51(3):181–188. doi: 10.1097/00005792-197205000-00004. [DOI] [PubMed] [Google Scholar]
  6. Chang L. M. The distributive nature of enzymatic DNA synthesis. J Mol Biol. 1975 Apr 5;93(2):219–235. doi: 10.1016/0022-2836(75)90129-1. [DOI] [PubMed] [Google Scholar]
  7. Davey M. W., Sulkowski E., Carter W. A. Hydrophobic interaction of human, mouse, and rabbit interferons with immobilized hydrocarbons. J Biol Chem. 1976 Dec 10;251(23):7620–7625. [PubMed] [Google Scholar]
  8. Evans M. J., Harvey S. R., Plummer M. J., Evans R. T., Laskowski M., Sr Murine DNA polymerases. I. Distinguishing characteristics of two activities separated by phosphocellulose chromatography. Proc Soc Exp Biol Med. 1974 Oct;147(1):35–42. doi: 10.3181/00379727-147-38277. [DOI] [PubMed] [Google Scholar]
  9. Gallo R. C., Abrell J. W., Robert M. S., Yang S. S., Smith R. G. Reverse transciptase from Mason-Pfizer monkey tumor virus, avian myeloblastosis virus, and Rauscher leukemia virus and its response to rifamycin derivatives. J Natl Cancer Inst. 1972 Apr;48(4):1185–1189. [PubMed] [Google Scholar]
  10. Gerard G. F., Gurgo C., Grandgenett D. P., Green M. Rifamycin derivatives: specific inhibitors of nucleic acid polymerases. Biochem Biophys Res Commun. 1973 Jul 2;53(1):194–201. doi: 10.1016/0006-291x(73)91419-8. [DOI] [PubMed] [Google Scholar]
  11. Green M., Bragdon J., Rankin A. 3-Cyclic amine derivatives of rifamycin: strong inhibitors of the DNA polymerase activity of RNA tumor viruses. Proc Natl Acad Sci U S A. 1972 May;69(5):1294–1298. doi: 10.1073/pnas.69.5.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gurgo C., Ray R., Green M. Rifamycin derivatives strongly inhibiting RNA leads to DNA polymerase (reverse transcriptase) of murine sarcoma viruses. J Natl Cancer Inst. 1972 Jul;49(1):61–79. [PubMed] [Google Scholar]
  13. Hanafusa H., Hanafusa T. Noninfectious RSV deficient in DNA polymerase. Virology. 1971 Jan;43(1):313–316. doi: 10.1016/0042-6822(71)90251-0. [DOI] [PubMed] [Google Scholar]
  14. Kakinuma K., Milavetz B. I., Rinehart K. L., Jr Carbon-13 nuclear magnetic resonance spectra of the streptovaricins and related compounds. J Org Chem. 1976 Apr 16;41(8):1358–1364. doi: 10.1021/jo00870a015. [DOI] [PubMed] [Google Scholar]
  15. Kornberg A. Active center of DNA polymerase. Science. 1969 Mar 28;163(3874):1410–1418. doi: 10.1126/science.163.3874.1410. [DOI] [PubMed] [Google Scholar]
  16. Leete E., Chedekel M. R. Tritium in deuterated compounds. Nature. 1972 Mar 24;236(5343):166–167. doi: 10.1038/236166c0. [DOI] [PubMed] [Google Scholar]
  17. Manly K. F. A continuous-flow system for the growth of RNA tumor viruses. Anal Biochem. 1975 Feb;63(2):491–500. doi: 10.1016/0003-2697(75)90373-5. [DOI] [PubMed] [Google Scholar]
  18. McClure W. R., Jovin T. M. The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I. J Biol Chem. 1975 Jun 10;250(11):4073–4080. [PubMed] [Google Scholar]
  19. McDonnell J. P., Garapin A. C., Levinson W. E., Quintrell N., Fanshier L., Bishop J. M. DNA polymerases of Rous sarcoma virus: delineation of two reactions with actinomycin. Nature. 1970 Oct 31;228(5270):433–435. doi: 10.1038/228433a0. [DOI] [PubMed] [Google Scholar]
  20. O'Connor T. E., Schiop-Stansly P., Sethi V. S., Hadidi A., Okano P. Antiviral antibiotics: inhibition of focus-formation in human or mouse cell cultures by sarcoma-inducing oncornaviruses with rifamycins. Intervirology. 1974;3(1-2):63–83. doi: 10.1159/000149743. [DOI] [PubMed] [Google Scholar]
  21. Rinehart K. L., Jr, Antosz F. J., Deshmukh P. V., Kakinuma K., Martin P. K., Milavetz B. I., Sasaki K., Witty T. R., Li L. H., Reusser F. Identification and preparation of damavaricins, biologically active precursors of streptovaricins. J Antibiot (Tokyo) 1976 Feb;29(2):201–203. doi: 10.7164/antibiotics.29.201. [DOI] [PubMed] [Google Scholar]
  22. Rinehart K. L., Jr, Antosz F. J., Sasaki K., Martin P. K., Maheshwari M. L., Reusser F., Li L. H., Moran D., Wiley P. F. Relative biological activities of individual streptovaricins and streptovaricin acetates. Biochemistry. 1974 Feb 26;13(5):861–867. doi: 10.1021/bi00702a004. [DOI] [PubMed] [Google Scholar]
  23. Riva S., Fietta A., Silvestri L. G. Mechanism of action of a rifamycin derivative (AF-013) which is active on the nucleic acid polymerases insensitive to rifampicin. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1263–1271. doi: 10.1016/0006-291x(72)90604-3. [DOI] [PubMed] [Google Scholar]
  24. Sasaki K., Rinehart K. L., Jr, Antosz F. J. Chemistry of the streptovaricins. VI. Oxidation products from streptovaricin C. J Antibiot (Tokyo) 1972 Jan;25(1):68–70. doi: 10.7164/antibiotics.25.68. [DOI] [PubMed] [Google Scholar]
  25. Sulkowski E., Davey M. W., Carter W. A. Interaction of human interferons with immobilized hydrophobic amino acids and dipeptides. J Biol Chem. 1976 Sep 10;251(17):5381–5385. [PubMed] [Google Scholar]
  26. Temin H. M., Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970 Jun 27;226(5252):1211–1213. doi: 10.1038/2261211a0. [DOI] [PubMed] [Google Scholar]
  27. Thompson F. M., Tischler A. N., Adams J., Calvin M. Inhibition of three nucleotide polymerases by rifamycin derivatives. Proc Natl Acad Sci U S A. 1974 Jan;71(1):107–109. doi: 10.1073/pnas.71.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ting R. C., Yang S. S., Gallo R. C. Reverse transcriptase, RNA tumour virus transformation and derivatives of rifamycin SV. Nat New Biol. 1972 Apr 12;236(67):163–166. doi: 10.1038/newbio236163a0. [DOI] [PubMed] [Google Scholar]
  29. Wu A. M., Gallo R. C. Interaction between murine type-C virus RNA-directed DNA polymerases and rifamycin derivatives. Biochim Biophys Acta. 1974 Apr 10;340(4):419–436. doi: 10.1016/0005-2787(74)90063-x. [DOI] [PubMed] [Google Scholar]
  30. Wu A. M., Ting R. C., Gallo R. C. RNA-directed DNA polymerase and virus-induced leukemia in mice. Proc Natl Acad Sci U S A. 1973 May;70(5):1298–1302. doi: 10.1073/pnas.70.5.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yang S. S., Herrera F. M., Smith R. G., Reitz M. S., Lancini G., Ting R. C., Gallo R. C. Rifamycin antibiotics: inhibitors of Rauscher murine leukemia virus reverse transcriptase and of purified DNA polymerases from human normal and leukemic lymphoblasts. J Natl Cancer Inst. 1972 Jul;49(1):7–25. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES