Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1978 May;13(5):745–752. doi: 10.1128/aac.13.5.745

Antibacterial Activity of Apalcillin (PC-904) Against Gram-Negative Bacilli, Especially Ampicillin-, Carbenicillin-, and Gentamicin-Resistant Clinical Isolates

Hiroshi Noguchi 1, Masako Kubo 1, Satonori Kurashige 1, Susumu Mitsuhashi 1
PMCID: PMC352326  PMID: 248269

Abstract

Apalcillin (PC-904) is active against carbenicillin- and ampicillin-resistant strains of gram-negative bacilli. Among Pseudomonas aeruginosa strains highly resistant to carbenicillin (≥3,200 μg/ml), half of them were susceptible to PC-904 at a concentration of 50 to 1,600 μg/ml. The minimal inhibitory concentration of PC-904 against P. aeruginosa strains resistant to carbenicillin (400 to 1,600 μg/ml) ranged from 3.1 to 25 μg/ml. Ampicillin- and carbenicillin-resistant Enterobacteriaceae strains were similarly susceptible to PC-904. However, drug resistance to PC-904 was already apparent among some strains of P. aeruginosa, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, P. vulgaris, and P. morganii, recently isolated in Japan; i.e., 4, 35, 32, 4, 6, and 14% of strains isolated were resistant. PC-904 was more active, on the other hand, than ampicillin and carbenicillin against antibiotic-susceptible Enterobacteriaceae and also showed high activity against most species of Pseudomonadaceae, especially P. cepacia and P. aeruginosa. The minimum inhibitory concentrations of PC-904 were greatly affected by inoculum size when the organisms tested were strains producing large amounts of beta-lactamase.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baird I. M., Slepack J. M., Kauffman C. A., Phair J. P. Nosocomial infection with gentamicin-carbenicillin-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1976 Oct;10(4):626–629. doi: 10.1128/aac.10.4.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ederer G. M., Matsen J. M. Colonization and infection with Pseudomonas cepacia. J Infect Dis. 1972 Jun;125(6):613–618. doi: 10.1093/infdis/125.6.613. [DOI] [PubMed] [Google Scholar]
  3. Holmes R. K., Minshew B. H., Gould I. K., Sanford J. P. Resistance of Pseudomonas aeruginosa to gentamicin and related aminoglycoside antibiotics. Antimicrob Agents Chemother. 1974 Sep;6(3):253–262. doi: 10.1128/aac.6.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kontomichalou P., Papachristou E., Angelatou F. Multiresistant plasmids from Pseudomonas aeruginosa highly resistant to either or both gentamicin and carbenicillin. Antimicrob Agents Chemother. 1976 Jun;9(6):866–873. doi: 10.1128/aac.9.6.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lowbury E. J., Lilly H. A., Kidson A., Ayliffe G. A., Jones R. J. Sensitivity of Pseudomonas aeruginosa to antibiotics: emergence of strains highly resistant to carbenicillin. Lancet. 1969 Aug 30;2(7618):448–452. doi: 10.1016/s0140-6736(69)90163-9. [DOI] [PubMed] [Google Scholar]
  7. Noguchi H., Eda Y., Tobiki H., Nakagome T., Komatsu T. PC-904, a novel broad-spectrum semisynthetic penicillin with marked antipseudomonal activity: microbiological evaluation. Antimicrob Agents Chemother. 1976 Feb;9(2):262–273. doi: 10.1128/aac.9.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Onishi H. R., Daoust D. R., Zimmerman S. B., Hendlin D., Stapley E. O. Cefoxitin, a semisynthetic cephamycin antibiotic: resistance to beta-lactamase inactivation. Antimicrob Agents Chemother. 1974 Jan;5(1):38–48. doi: 10.1128/aac.5.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ooka T., Hashimoto H., Mitsuhashi S. Comparison of penicillinases produced by R factors isolated from ampicillin-resistant gram-negative bacteria. Jpn J Microbiol. 1970 Mar;14(2):123–128. doi: 10.1111/j.1348-0421.1970.tb00499.x. [DOI] [PubMed] [Google Scholar]
  10. PERRET C. J. Iodometric assay of penicillinase. Nature. 1954 Nov 27;174(4439):1012–1013. doi: 10.1038/1741012a0. [DOI] [PubMed] [Google Scholar]
  11. Sabath L. D., Garner C., Wilcox C., Finland M. Effect of inoculum and of beta-lactamase on the anti-staphylococcal activity of thirteen penicillins and cephalosporins. Antimicrob Agents Chemother. 1975 Sep;8(3):344–349. doi: 10.1128/aac.8.3.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Spratt B. G., Pardee A. B. Penicillin-binding proteins and cell shape in E. coli. Nature. 1975 Apr 10;254(5500):516–517. doi: 10.1038/254516a0. [DOI] [PubMed] [Google Scholar]
  13. Yamamoto T., Yokota T. Beta-lactamase-directed barrier for penicillins of Escherichia coli carrying R plasmids. Antimicrob Agents Chemother. 1977 Jun;11(6):936–940. doi: 10.1128/aac.11.6.936. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES