Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1978 Jun;13(6):1036–1039. doi: 10.1128/aac.13.6.1036

Microbial Degradation of Cephalothin by Cephalothin-Susceptible Escherichia coli

Tsuneo Nishiura 1, Yukimichi Kawada 1, Yoko Shiomi 2, Koji O'Hara 2, Megumi Kono 2
PMCID: PMC352384  PMID: 354516

Abstract

Cephalothin (CET)-susceptible Escherichia coli, which can degrade CET after prolonged incubation in broth containing a concentration of the drug greater than the minimum inhibitory concentration, was found in a clinical specimen. The substrate specificity of the partially purified enzyme to cephalosporin analogs strongly indicated the occurrence of CET-specific degradation. Nuclear magnetic resonance analysis of the degradation reaction demonstrated the appearance of two new signals attributed to deacetyl CET. This suggests the possibility of the presence of acylesterase.

Full text

PDF
1036

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berman S. J., Boughton W. H., Sugihara J. G., Wong E. G., Siemsen A. W. Hemodialysis-associated infections: treatment with cephapirin. Antimicrob Agents Chemother. 1978 Jan;13(1):4–6. doi: 10.1128/aac.13.1.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COLE M. PROPERTIES OF THE PENICILLIN DEACYLASE ENZYME OF ESCHERICHIA COLI. Nature. 1964 Aug 1;203:519–520. doi: 10.1038/203519a0. [DOI] [PubMed] [Google Scholar]
  3. DEMAIN A. L., WALTON R. B., NEWKIRK J. F., MILLER I. M. MICROBIAL DEGRADATION OF CEPHALOSPORIN C. Nature. 1963 Aug 31;199:909–910. doi: 10.1038/199909a0. [DOI] [PubMed] [Google Scholar]
  4. Hamilton-Miller J. M., Richards E., Abraham E. P. Changes in proton-magnetic-resonance spectra during aminolysis and enzymic hydrolysis of cephalosporins. Biochem J. 1970 Feb;116(3):385–395. doi: 10.1042/bj1160385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. JEFFERY J. D., ABRAHAM E. P., NEWTON G. G. Deacetylcephalosporin C. Biochem J. 1961 Dec;81:591–596. doi: 10.1042/bj0810591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kono M., O'Hara K. Mechanism of chloramphenicol-resistance mediated by kR102 factor in Pseudomonas aeruginosa. J Antibiot (Tokyo) 1976 Feb;29(2):176–180. doi: 10.7164/antibiotics.29.176. [DOI] [PubMed] [Google Scholar]
  7. Kono M., O'Hara K., Nagawa M., Mitsuhashi S. Antibacterial activity of chloramphenicol-related compounds toward a chloramphenicol-resistant strains of Staphylococcus aureus. Jpn J Microbiol. 1972 Nov;16(6):461–467. doi: 10.1111/j.1348-0421.1972.tb00685.x. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Linström E. B., Boman H. G., Steele B. B. Resistance of Escherichia coli to penicillins. VI. Purification and characterization of the chromosomally mediated penicillinase present in ampA-containing strains. J Bacteriol. 1970 Jan;101(1):218–231. doi: 10.1128/jb.101.1.218-231.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nishida M., Yokota Y., Okui M., Mine Y., Matsubara T. Studies on microbial degradation of cephalosporin C derivatives. I. The role of beta-lactamase and acylesterase in the enzymatic degradation of cephalosporins. J Antibiot (Tokyo) 1968 Mar;21(3):165–169. doi: 10.7164/antibiotics.21.165. [DOI] [PubMed] [Google Scholar]
  11. PERRET C. J. Iodometric assay of penicillinase. Nature. 1954 Nov 27;174(4439):1012–1013. doi: 10.1038/1741012a0. [DOI] [PubMed] [Google Scholar]
  12. Yamagishi S., O'Hara K., Sawai T., Mitsuhashi S. The purification and properties of penicillin beta-lactamases mediated by transmissible R factors in Escherichia coli. J Biochem. 1969 Jul;66(1):11–20. doi: 10.1093/oxfordjournals.jbchem.a129111. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES