Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1978 Jul;14(1):73–77. doi: 10.1128/aac.14.1.73

Antibiotic Biosynthesis by Cofermentation of Blocked Mutants of Two Micromonospora Species

B K Lee 1, T L Nagabhushan 1, R G Condon 1, A B Cooper 1, J A Waitz 1
PMCID: PMC352407  PMID: 686710

Abstract

Two aminocyclitol-negative Micromonospora mutants representing two different species, M. purpurea and M. inyoensis, and blocked at different steps in the biosynthetic pathway were paired and cofermented for the synthesis of antibiotics. The two blocked mutants were incapable of producing antibiotics alone except when 2-deoxystreptamine was added. When combined they produced gentamicins A, X2, C1a, and C2b, which all have an amino group at the 2′ position, and gentamicin B, which has a hydroxyl group at this position instead.

Full text

PDF
73

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Daniels P. J., Luce C., Nagabhushan T. L. The gentamicin antibiotics. 6. Gentamicin C2b, an aminoglycoside antibiotic produced by Micromonospora purpurea mutant JI-33. J Antibiot (Tokyo) 1975 Jan;28(1):35–41. doi: 10.7164/antibiotics.28.35. [DOI] [PubMed] [Google Scholar]
  2. Daniels P. J., Mallams A. K., Weinstein J., Wright J. J., Milne G. W. Mass spectral studies on aminocyclitol-aminoglycoside antibiotics. J Chem Soc Perkin 1. 1976;(10):1078–1088. [PubMed] [Google Scholar]
  3. Daum S. J., Rosi D., Goss W. Production of antibiotics by biotransformation of 2,4,6/3,5-pentahydroxycyclohexanone and 2,4/3,5-tetrahydroxycyclohexanone by a deoxystreptamine-negative mutant of Micromonospora purpurea. J Am Chem Soc. 1977 Jan 5;99(1):283–284. doi: 10.1021/ja00443a068. [DOI] [PubMed] [Google Scholar]
  4. Delić V., Pigac J., Sermonti G. Detection and study of cosynthesis of tetracycline antibiotics by an agar method. J Gen Microbiol. 1969 Jan;55(1):103–108. doi: 10.1099/00221287-55-1-103. [DOI] [PubMed] [Google Scholar]
  5. Lee B. K., Ryu D. Y., Thoma R. W., Brown W. E. Induction and repression of steroid hydroxylases and dehydrogenases in mixed culture fermentations. J Gen Microbiol. 1969 Jan;55(1):145–153. doi: 10.1099/00221287-55-1-145. [DOI] [PubMed] [Google Scholar]
  6. Lee B. K., Testa R. T., Wagman G. H., Liu C. M., McDaniel L., Schaffner C. Incorporation of L-methionine-methyl-14C into gentamicins. J Antibiot (Tokyo) 1973 Dec;26(12):728–731. doi: 10.7164/antibiotics.26.728. [DOI] [PubMed] [Google Scholar]
  7. Morton J. B., Long R. C., Daniels P. J., Tkach R. W., Goldstein J. H. A carbon-13 magnetic resonance study of aminoglycoside pseudotriasaccharides. The gentamicin antibiotics. J Am Chem Soc. 1973 Oct 31;95(22):7464–7469. doi: 10.1021/ja00803a042. [DOI] [PubMed] [Google Scholar]
  8. Nagabhushan T. L., Turner W. N., Daniels P. J., Morton J. B. The gentamicin antibiotics. 7. Structures of the gentamicin antibiotics A1, A3, and A4. J Org Chem. 1975 Sep 19;40(19):2830–2834. doi: 10.1021/jo00907a028. [DOI] [PubMed] [Google Scholar]
  9. Testa R. T., Wagman G. H., Daniels P. J., Weinstein M. J. Mutamicins; biosynthetically created new sisomicin analogues. J Antibiot (Tokyo) 1974 Dec;27(12):917–921. doi: 10.7164/antibiotics.27.917. [DOI] [PubMed] [Google Scholar]
  10. Weinstein M. J., Marquez J. A., Testa R. T., Wagman G. H., Oden E. M., Waitz J. A. Antibiotic 6640, a new Micromonospora-produced aminoglycoside antibiotic. J Antibiot (Tokyo) 1970 Nov;23(11):551–554. doi: 10.7164/antibiotics.23.551. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES