Abstract
The antibacterial activity of UK-18,892, a new semisynthetic aminoglycoside, was examined against aminoglycoside-susceptible and aminoglycoside-resistant clinical isolates of gram-negative bacilli and Staphylococcus aureus. UK-18,892 had a similar degree of activity to those of amikacin and kanamycin A against aminoglycoside-susceptible bacteria but was less potent than gentamicin against all isolates except Providencia spp. UK-18,892 was highly active against aminoglycoside-resistant bacteria, inhibiting 93% of the 268 isolates examined at 12.5 μg/ml. Amikacin was similarly active, whereas gentamicin inhibited only 14% of these isolates at 12.5 μg/ml.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barza M., Scheife R. T. Drug therapy reviews: Antimicrobial spectrum, pharmacology and therapeutic use of antibiotics--part 4: aminoglycosides. Am J Hosp Pharm. 1977 Jul;34(7):723–737. [PubMed] [Google Scholar]
- Levison M. E., Kaye D. In vitro comparison of four aminoglycoside antibiotics: sisomicin, gentamicin, tobramycin, and BB-K8. Antimicrob Agents Chemother. 1974 Jun;5(6):667–669. doi: 10.1128/aac.5.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips I., King B. A., Shannon K. P. The mechanisms of resistance to aminoglycosides in the genus Pseudomonas. J Antimicrob Chemother. 1978 Mar;4(2):121–129. doi: 10.1093/jac/4.2.121. [DOI] [PubMed] [Google Scholar]
- Price K. A., Chudzik G. M. Amikacin. Lancet. 1977 Sep 24;2(8039):659–660. doi: 10.1016/s0140-6736(77)92523-5. [DOI] [PubMed] [Google Scholar]
- Rahal J. J., Jr, Simberkoff M. S., Kagan K., Moldover N. H. Bactericidal efficacy of Sch 20569 and amikacin against gentamicin-sensitive and -resistant organisms. Antimicrob Agents Chemother. 1976 Apr;9(4):595–599. doi: 10.1128/aac.9.4.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds A. V., Hamilton-Miller J. M., Brumfitt W. Newer aminoglycosides--amikacin and tobramycin: an in-vitro comparison with kanamycin and gentamicin. Br Med J. 1974 Sep 28;3(5934):778–780. doi: 10.1136/bmj.3.5934.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson K., Jevons S., Moore J. W., Ross B. C., Wright J. R. Synthesis and antibacterial activities of 1-N [(S)-omega-amino-2-hydroxyalkyl] kanamycin A derivatives. J Antibiot (Tokyo) 1977 Oct;30(10):843–846. doi: 10.7164/antibiotics.30.843. [DOI] [PubMed] [Google Scholar]
- Smith C. R., Baughman K. L., Edwards C. Q., Rogers J. F., Lietman P. S. Controlled comparison of amikacin and gentamicin. N Engl J Med. 1977 Feb 17;296(7):349–353. doi: 10.1056/NEJM197702172960701. [DOI] [PubMed] [Google Scholar]
- Umezawa H., Doi O., Ogura M., Kondo S., Tanaka N. Phosphorylation and inactivation of kanamycin by Pseudomonas aeruginosa. J Antibiot (Tokyo) 1968 Feb;21(2):154–155. doi: 10.7164/antibiotics.21.154. [DOI] [PubMed] [Google Scholar]
- Young L. S., Hewitt W. L. Activity of five aminoglycoside antibiotics in vitro against gram-negative bacilli and Staphylococcus aureus. Antimicrob Agents Chemother. 1973 Dec;4(6):617–625. doi: 10.1128/aac.4.6.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
