Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1979 Feb;15(2):258–262. doi: 10.1128/aac.15.2.258

Chloroquine Resistance in Malaria: Accessibility of Drug Receptors to Mefloquine

Coy D Fitch 1, Robert L Chan 1, Rekha Chevli 1
PMCID: PMC352643  PMID: 371544

Abstract

The process of mefloquine accumulation was studied in mouse erythrocytes infected with either Plasmodium berghei CS (chloroquine susceptible) or P. berghei CR (chloroquine resistant). In both cases, mefloquine was accumulated by a saturable process with an apparent dissociation constant of 2.5 × 10−6 M and an apparent maximal capacity of 700 μmol per kg of erythrocyte pellet; uninfected mouse erythrocytes accumulated more than half as much mefloquine as infected erythrocytes. The process of accumulation was not stimulated by providing glucose as a substrate, and it was not inhibited in infected erythrocytes by azide, iodoacetate, or incubation at 2°C. Although mefloquine was accumulated more effectively than chloroquine by uninfected erythrocytes and by erythrocytes infected with P. berghei CR, competition between chloroquine and mefloquine was observed, raising the possibility that the same process of accumulation serves both drugs. Chloroquine competitively inhibits mefloquine accumulation, with an apparent inhibitor constant of 1.7 × 10−3 M, and mefloquine competitively inhibits chloroquine accumulation, with an apparent inhibitor constant of 2 × 10−6 M. The same process of accumulation and the same group of receptors could serve both drugs if mefloquine has greater access than chloroquine to the receptors. Regardless of whether the same process serves both drugs, undiminished accumulation by erythrocytes infected with P. berghei CR provides an explanation for the superiority of mefloquine in treating chloroquine-resistant malaria.

Full text

PDF
258

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clyde D. F., McCarthy V. C., Miller R. M., Hornick R. B. Suppressive activity of mefloquine in sporozoite-induced human malaria. Antimicrob Agents Chemother. 1976 Mar;9(3):384–386. doi: 10.1128/aac.9.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davidson M. W., Griggs B. G., Boykin D. W., Wilson W. D. Molecular structural effects involved in the interaction of quinolinemethanolamines with DNA. Implications for antimalarial action. J Med Chem. 1977 Sep;20(9):1117–1122. doi: 10.1021/jm00219a002. [DOI] [PubMed] [Google Scholar]
  3. Fitch C. D., Chevli R., Gonzalez Y. Chloroquine accumulation by erythrocytes: a latent capability. Life Sci. 1974 Jun 16;14(12):2441–2446. doi: 10.1016/0024-3205(74)90140-4. [DOI] [PubMed] [Google Scholar]
  4. Fitch C. D., Chevli R., Gonzalez Y. Chloroquine resistance in malaria: variations of substrate-stimulated chloroquine accumulation. J Pharmacol Exp Ther. 1975 Dec;195(3):389–396. [PubMed] [Google Scholar]
  5. Fitch C. D., Chevli R., Gonzalez Y. Chloroquine-resistant Plasmodium falciparum: effect of substrate on chloroquine and amodiaquin accumulation. Antimicrob Agents Chemother. 1974 Dec;6(6):757–762. doi: 10.1128/aac.6.6.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fitch C. D. Chloroquine resistance in malaria: a deficiency of chloroquine binding. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1181–1187. doi: 10.1073/pnas.64.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fitch C. D. Chloroquine susceptibility in malaria: dependence on exposure of parasites to the drug. Life Sci. 1977 Nov 15;21(10):1511–1514. doi: 10.1016/0024-3205(77)90207-7. [DOI] [PubMed] [Google Scholar]
  8. Fitch C. D. Chloroquine-resistant Plasmodium falciparum: difference in the handling of 14C-amodiaquin and 14C-chloroquine. Antimicrob Agents Chemother. 1973 May;3(5):545–548. doi: 10.1128/aac.3.5.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fitch C. D., Gonzalez Y., Chevli R. Amodiaquin accumulation by mouse erythrocytes infected with Plasmodium berghei. J Pharmacol Exp Ther. 1975 Dec;195(3):397–403. [PubMed] [Google Scholar]
  10. Fitch C. D., Ng R. C., Chevli R. Erythrocyte surface: novel determinant of drug susceptibility in rodent malaria. Antimicrob Agents Chemother. 1978 Aug;14(2):185–193. doi: 10.1128/aac.14.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fitch C. D., Yunis N. G., Chevli R., Gonzalez Y. High-affinity accumulation of chloroquine by mouse erythrocytes infected with Plasmodium berghei. J Clin Invest. 1974 Jul;54(1):24–33. doi: 10.1172/JCI107747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall A. P., Doberstyn E. B., Karnchanachetanee C., Samransamruajkit S., Laixuthai B., Pearlman E. J., Lampe R. M., Miller C. F., Phintuyothin P. Sequential treatment with quinine and mefloquine or quinine and pyrimethamine-sulfadoxine for falciparum malaria. Br Med J. 1977 Jun 25;1(6077):1626–1628. doi: 10.1136/bmj.1.6077.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Macomber P. B., O'Brien R. L., Hahn F. E. Chloroquine: physiological basis of drug resistance in Plasmodium berghei. Science. 1966 Jun 3;152(3727):1374–1375. doi: 10.1126/science.152.3727.1374. [DOI] [PubMed] [Google Scholar]
  14. Ohnmacht C. J., Patel A. R., Lutz R. E. Antimalarials. 7. Bis(trifluoromethyl)- -(2-piperidyl)-4-quinolinemethanols. J Med Chem. 1971 Oct;14(10):926–928. doi: 10.1021/jm00292a008. [DOI] [PubMed] [Google Scholar]
  15. Peters W., Howells R. E., Portus J., Robinson B. L., Thomas S., Warhurst D. C. The chemotherapy of rodent malaria, XXVII. Studies on mefloquine (WR 142,490). Ann Trop Med Parasitol. 1977 Dec;71(4):407–418. doi: 10.1080/00034983.1977.11687206. [DOI] [PubMed] [Google Scholar]
  16. Rieckmann K. H., Trenholme G. M., Williams R. L., Carson P. E., Frischer H., Desjardins R. E. Prophylactic activity of mefloquine hydrochloride (WR 142490) in drug-resistant malaria. Bull World Health Organ. 1974;51(4):375–377. [PMC free article] [PubMed] [Google Scholar]
  17. Schmidt L. H., Crosby R., Rasco J., Vaughan D. Antimalarial activities of various 4-quinolonemethanols with special attention to WR-142,490 (mefloquine). Antimicrob Agents Chemother. 1978 Jun;13(6):1011–1030. doi: 10.1128/aac.13.6.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schmidt L. H. Infections with Plasmodium falciparum and Plasmodium vivax in the owl monkey--model systems for basic biological and chemotherapeutic studies. Trans R Soc Trop Med Hyg. 1973;67(4):446–474. doi: 10.1016/0035-9203(73)90077-1. [DOI] [PubMed] [Google Scholar]
  19. Schmidt L. H., Vaughan D., Mueller D., Crosby R., Hamilton R. Activities of various 4-aminoquinolines against infections with chloroquine-resistant strains of Plasmodium falciparum. Antimicrob Agents Chemother. 1977 May;11(5):826–843. doi: 10.1128/aac.11.5.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Trenholme C. M., Williams R. L., Desjardins R. E., Frischer H., Carson P. E., Rieckmann K. H., Canfield C. J. Mefloquine (WR 142,490) in the treatment of human malaria. Science. 1975 Nov 21;190(4216):792–794. doi: 10.1126/science.1105787. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES