Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1979 Mar;15(3):351–355. doi: 10.1128/aac.15.3.351

Comparison of Anaerobic Susceptibility Results Obtained by Different Methods

J E Rosenblatt 1, P R Murray 2, A C Sonnenwirth 3, J L Joyce 1
PMCID: PMC352664  PMID: 464560

Abstract

Susceptibility tests using 7 antimicrobial agents (carbenicillin, chloramphenicol, clindamycin, penicillin, cephalothin, metronidazole, and tetracycline) were run against 35 anaerobes including Bacteroides fragilis (17), other gram-negative bacilli (7), clostridia (5), peptococci (4), and eubacteria (2). Results in triplicate obtained by the microbroth dilution method and the aerobic modification of the broth disk method were compared with those obtained with an agar dilution method using Wilkins-Chalgren agar. Media used in the microbroth dilution method included Wilkins-Chalgren broth, brain heart infusion broth, brucella broth, tryptic soy broth, thioglycolate broth, and Schaedler's broth. A result differing by more than one dilution from the Wilkins-Chalgren agar result was considered a discrepancy, and when there was a change in susceptibility status this was termed a significant discrepancy. The microbroth dilution method using Wilkins-Chalgren broth and thioglycolate broth produced the fewest total discrepancies (22 and 24, respectively), and Wilkins-Chalgren broth, thioglycolate, and Schaedler's broth had the fewest significant discrepancies (6, 5, and 5, respectively). With the broth disk method, there were 15 significant discrepancies, although half of these were with tetracycline, which was the antimicrobial agent associated with the highest number of significant discrepancies (33), considering all of the test methods and media.

Full text

PDF
351

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Jones R. N., Packer R. R., Fuchs P. C., Barry A. L., Borchardt K. Stability of antimicrobials in Schaedler's anaerobic and brain heart infusion broths stored at --20 degrees C. J Antibiot (Tokyo) 1978 Mar;31(3):226–228. doi: 10.7164/antibiotics.31.226. [DOI] [PubMed] [Google Scholar]
  2. Kurzynski T. A., Yrios J. W., Helstad A. G., Field C. R. Aerobically incubated thioglycolate broth disk method for antibiotic susceptibility testing of anaerobes. Antimicrob Agents Chemother. 1976 Oct;10(4):727–732. doi: 10.1128/aac.10.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Rotilie C. A., Fass R. J., Prior R. B., Perkins R. L. Microdilution technique for antimicrobial susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother. 1975 Mar;7(3):311–315. doi: 10.1128/aac.7.3.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Wilkins T. D., Chalgren S. Medium for use in antibiotic susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother. 1976 Dec;10(6):926–928. doi: 10.1128/aac.10.6.926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Wilkins T. D., Thiel T. Modified broth-disk method for testing the antibiotic susceptibility of anaerobic bacteria. Antimicrob Agents Chemother. 1973 Mar;3(3):350–356. doi: 10.1128/aac.3.3.350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES