Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1979 May;15(5):696–705. doi: 10.1128/aac.15.5.696

Phosphonopeptides as Antibacterial Agents: Mechanism of Action of Alaphosphin

Frank R Atherton 1, Michael J Hall 1, Cedric H Hassall 1, Robert W Lambert 1, William J Lloyd 1, Peter S Ringrose 1
PMCID: PMC352740  PMID: 525987

Abstract

The novel antibacterial peptide mimetic alaphosphin (l-alanyl-l-1-aminoethylphosphonic acid) selectively inhibited peptidoglycan biosynthesis in both gram-negative and gram-positive bacteria. It induced accumulation of uridine diphosphate-N-acetyl-muramyl-tripeptide in gram-positive organisms and significantly reduced the intracellular pool levels of d-alanine. Alaphosphin was actively transported into bacterial cells by stereospecific peptide permeases and was subsequently hydrolyzed by intracellular aminopeptidases to yield l-1-aminoethylphosphonic acid. This alanine mimetic rapidly accumulated inside susceptible cells to yield a concentration which was 100- to 1,000-fold in excess of that of the precursor peptide in the surrounding medium. In the case of susceptible gram-negative organisms, it was shown that 1-aminoethylphosphonic acid was incorporated into a metabolite which was tentatively identified as uridine diphosphate-N-acetylmuramyl-aminoethylphosphonate. The primary intracellular target site of 1-aminoethylphosphonic acid was alanine racemase (EC 5.1.1.1), which was reversibly and competitively inhibited in the gram-negative organisms Escherichia coli and Pseudomonas aeruginosa and irreversibly inhibited in a time-dependent manner in the gram-positive organisms Staphylococcus aureus and Streptococcus faecalis. A secondary target site could be uridine diphosphate-N-acetylmuramyl-l-alanine synthetase [EC 6.3.2.8(b)]. The mechanism of action of alaphosphin may be regarded as involving at least three stages: (i) active transport by peptide permeases; (ii) intracellular peptidase cleavage; and (iii) action of l-1-aminoethylphosphonate on alanine racemase.

Full text

PDF
696

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. G., Atherton F. R., Hall M. J., Hassall C. H., Holmes S. W., Lambert R. W., Nisbet L. J., Ringrose P. S. Phosphonopeptides as antibacterial agents: alaphosphin and related phosphonopeptides. Antimicrob Agents Chemother. 1979 May;15(5):684–695. doi: 10.1128/aac.15.5.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen J. G., Atherton F. R., Hall M. J., Hassall C. H., Holmes S. W., Lambert R. W., Nisbet L. J., Ringrose P. S. Phosphonopeptides, a new class of synthetic antibacterial agents. Nature. 1978 Mar 2;272(5648):56–58. doi: 10.1038/272056a0. [DOI] [PubMed] [Google Scholar]
  3. Ames B. N., Ames G. F., Young J. D., Tsuchiya D., Lecocq J. Illicit transport: the oligopeptide permease. Proc Natl Acad Sci U S A. 1973 Feb;70(2):456–458. doi: 10.1073/pnas.70.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Atherton F. R., Hall M. J., Hassall C. H., Lambert R. W., Ringrose P. S. Phosphonopeptides as antibacterial agents: rationale, chemistry, and structure-activity relationships. Antimicrob Agents Chemother. 1979 May;15(5):677–683. doi: 10.1128/aac.15.5.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boothby D., Daneo-Moore L., Shockman G. D. A rapid, guantitative, and selective estimation of radioactively labeled peptidoglycan in gram-positive bacteria. Anal Biochem. 1971 Dec;44(2):645–653. doi: 10.1016/0003-2697(71)90255-7. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diddens H., Zähner H., Kraas E., Göhring W., Jung G. On the transport of tripeptide antibiotics in bacteria. Eur J Biochem. 1976 Jun 15;66(1):11–23. doi: 10.1111/j.1432-1033.1976.tb10420.x. [DOI] [PubMed] [Google Scholar]
  8. Fickel T. E., Gilvarg C. Transport of impermeant substances in E. coli by way of oligopeptide permease. Nat New Biol. 1973 Feb 7;241(110):161–163. doi: 10.1038/newbio241161a0. [DOI] [PubMed] [Google Scholar]
  9. Hammes W., Schleifer K. H., Kandler O. Mode of action of glycine on the biosynthesis of peptidoglycan. J Bacteriol. 1973 Nov;116(2):1029–1053. doi: 10.1128/jb.116.2.1029-1053.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harkness D. R. Bacterial growth on aminoalkylphosphonic acids. J Bacteriol. 1966 Sep;92(3):623–627. doi: 10.1128/jb.92.3.623-627.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holden J. T., Van Balgooy J. N., Kittredge J. S. Transport of aminophosphonic acids in Lactobacillus plantarum and Streptococcus faecalis. J Bacteriol. 1968 Oct;96(4):950–957. doi: 10.1128/jb.96.4.950-957.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kahan F. M., Kahan J. S., Cassidy P. J., Kropp H. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974 May 10;235(0):364–386. doi: 10.1111/j.1749-6632.1974.tb43277.x. [DOI] [PubMed] [Google Scholar]
  13. Kenig M., Vandamme E., Abraham E. P. The mode of action of bacilysin and anticapsin and biochemical properties of bacilysin-resistant mutants. J Gen Microbiol. 1976 May;94(1):46–54. doi: 10.1099/00221287-94-1-46. [DOI] [PubMed] [Google Scholar]
  14. Lambert M. P., Neuhaus F. C. Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol. 1972 Jun;110(3):978–987. doi: 10.1128/jb.110.3.978-987.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lugtenberg E. J. Studies on Escherichia coli enzymes involved in the synthesis of uridine diphosphate-N-acetyl-muramyl-pentapeptide. J Bacteriol. 1972 Apr;110(1):26–34. doi: 10.1128/jb.110.1.26-34.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Manning J. M., Merrifield N. E., Jones W. M., Gotschlich E. C. Inhibition of bacterial growth by beta-chloro-D-alanine. Proc Natl Acad Sci U S A. 1974 Feb;71(2):417–421. doi: 10.1073/pnas.71.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NEUHAUS F. C., LYNCH J. L. THE ENZYMATIC SYNTHESIS OF D-ALANYL-D-ALANINE. 3. ON THE INHIBITION OF D-ALANYL-D-ALANINE SYNTHETASE BY THE ANTIBIOTIC D-CYCLOSERINE. Biochemistry. 1964 Apr;3:471–480. doi: 10.1021/bi00892a001. [DOI] [PubMed] [Google Scholar]
  18. Payne J. W. Peptides and micro-organisms. Adv Microb Physiol. 1976;13:55–113. doi: 10.1016/s0065-2911(08)60038-7. [DOI] [PubMed] [Google Scholar]
  19. Perkins H. R., Nieto M. The chemical basis for the action of the vancomycin group of antibiotics. Ann N Y Acad Sci. 1974 May 10;235(0):348–363. doi: 10.1111/j.1749-6632.1974.tb43276.x. [DOI] [PubMed] [Google Scholar]
  20. REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
  21. Roberts E., Simonsen D. G., Horiguchi M., Kittredge J. S. Transamination of aminoalkylphosphonic acids with alpha ketoglutarate. Science. 1968 Feb 23;159(3817):886–888. doi: 10.1126/science.159.3817.886. [DOI] [PubMed] [Google Scholar]
  22. Rosenberg H., La Nauze J. M. The metabolism of phosphonates by microorganisms. The transport of aminoethylphosphonic acid in Bacillus cereus. Biochim Biophys Acta. 1967 Jun 13;141(1):79–90. doi: 10.1016/0304-4165(67)90247-4. [DOI] [PubMed] [Google Scholar]
  23. Soper T. S., Manning J. M. Synergy in the antimicrobial action of penicillin and beta-chloro-D-alanine in vitro. Antimicrob Agents Chemother. 1976 Feb;9(2):347–349. doi: 10.1128/aac.9.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Suda H., Aoyagi T., Takeuchi T., Umezawa H. Inhibition of aminopeptidase B and leucine aminopeptidase by bestatin and its stereoisomer. Arch Biochem Biophys. 1976 Nov;177(1):196–200. doi: 10.1016/0003-9861(76)90429-x. [DOI] [PubMed] [Google Scholar]
  25. Tempest D. W., Meers J. L., Brown C. M. Influence of environment on the content and composition of microbial free amino acid pools. J Gen Microbiol. 1970 Dec;64(2):171–185. doi: 10.1099/00221287-64-2-171. [DOI] [PubMed] [Google Scholar]
  26. WISHNOW R. M., STROMINGER J. L., BIRGE C. H., THRENN R. H. BIOCHEMICAL EFFECTS OF NOVOBIOCIN ON STAPHYLOCOCCUS AUREUS. J Bacteriol. 1965 Apr;89:1117–1123. doi: 10.1128/jb.89.4.1117-1123.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang E., Walsh C. Suicide substrates for the alanine racemase of Escherichia coli B. Biochemistry. 1978 Apr 4;17(7):1313–1321. doi: 10.1021/bi00600a028. [DOI] [PubMed] [Google Scholar]
  28. Wargel R. J., Hadur C. A., Neuhaus F. C. Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine, and glycine. J Bacteriol. 1971 Mar;105(3):1028–1035. doi: 10.1128/jb.105.3.1028-1035.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES