Abstract
Ustilago maydis sporidia treated with 0.1 μg of azasterol (15-aza-24-methylene-d-homocholesta-8,14-dien-3β-ol) per ml appeared branched and vacuolated after 6 h of incubation. Sporidial multiplication, dry weight increase, and synthesis of protein, deoxyribonucleic acid, and ribonucleic acid were only slightly or moderately inhibited during the initial 3 h of incubation. An increase of free fatty acids was observed in lipid extracts of treated sporidia after incubation for 3 h or more. Ergosterol synthesis was completely inhibited within 1 h and there was a gradual decline of ergosterol content during 6 h which was accompanied by an accumulation of the sterol intermediate ergosta-8,14-dien-3β-ol. The results indicate that toxicity of the azasterol results from specific inhibition of the reduction of the sterol C-14(15) double bond. A triarimol-tolerant strain of Cladosporium cucumerinum was tolerant to the azasterol, but an imazalil-tolerant strain of Aspergillus nidulans was not.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akhtar M., Brooks W. A., Watkinson I. A. The intermediary role of a steroid 8,14-dien-3-beta-ol system in ergosterol biosynthesis. Biochem J. 1969 Nov;115(2):135–137. doi: 10.1042/bj1150135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailey R. B., Hays P. R., Parks L. W. Homoazasterol-mediated inhibition of yeast sterol biosynthesis. J Bacteriol. 1976 Dec;128(3):730–734. doi: 10.1128/jb.128.3.730-734.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boeck L. D., Hoehn M. M., Westhead J. E., Wolter R. K., Thomas D. N. New azasteroidal antifungal antibotics from Geotrichum flavo-brunneum. I. Discovery and fermentation studies. J Antibiot (Tokyo) 1975 Feb;28(2):95–101. doi: 10.7164/antibiotics.28.95. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Fryberg M., Oehlschlager A. C., Unrau A. M. Biosynthesis of ergosterol in yeast. Evidence for multiple pathways. J Am Chem Soc. 1973 Aug 22;95(17):5747–5757. doi: 10.1021/ja00798a051. [DOI] [PubMed] [Google Scholar]
- Gordee R. S., Butler T. F. New azasteroidal antifungal antibiotics from Geotrichum flavo-brunneum. III. Biological activity. J Antibiot (Tokyo) 1975 Feb;28(2):112–117. doi: 10.7164/antibiotics.28.112. [DOI] [PubMed] [Google Scholar]
- Hays P. R., Neal W. D., Parks L. W. Physiological effects of an antimycotic azasterol on cultures of Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1977 Aug;12(2):185–191. doi: 10.1128/aac.12.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hays P. R., Parks L. W., Pierce H. D., Jr, Oehlschlager A. C. Accumulation of ergosta-8,14-dien-3beta-ol by Saccharomyces cerevisiae cultured with an azasterol antimycotic agent. Lipids. 1977 Aug;12(8):666–668. doi: 10.1007/BF02533762. [DOI] [PubMed] [Google Scholar]
- Huang C. H. A structural model for the cholesterol-phosphatidylcholine complexes in bilayer membranes. Lipids. 1977 Apr;12(4):348–356. doi: 10.1007/BF02533637. [DOI] [PubMed] [Google Scholar]
- Michel K. H., Hamill R. L., Larsen S. H., Williams R. H. New azasteroidal antifungal antibiotics from Geotrichum flavo-brunneum. II. Isolation and characterization. J Antibiot (Tokyo) 1975 Feb;28(2):102–111. doi: 10.7164/antibiotics.28.102. [DOI] [PubMed] [Google Scholar]
- Ragsdale N. N. Specific effects of triarimol on sterol biosynthesis in Ustilago maydis. Biochim Biophys Acta. 1975 Jan 24;380(1):81–96. doi: 10.1016/0005-2760(75)90047-8. [DOI] [PubMed] [Google Scholar]
- Trocha P. J., Jasne S. J., Sprinson D. B. Yeast mutants blocked in removing the methyl group of lanosterol at C-14. Separation of sterols by high-pressure liquid chromatography. Biochemistry. 1977 Oct 18;16(21):4721–4726. doi: 10.1021/bi00640a029. [DOI] [PubMed] [Google Scholar]

