Abstract
The mechanism of synergistic activity of a combination of ampicillin and dicloxacillin was studied on beta-lactamase-producing Citrobacter freundii GN346 and its derived beta-lactamaseless mutant GN346/16. The synergistic activity was exhibited against the parent strain but not against the mutant strain. Precultivation of the parent strain with the combination reduced the amount of the subsequent binding of [14C]penicillin G to the membrane fraction from the treated cells, but no reduction was observed in the case of cells treated with ampicillin or dicloxacillin alone. On the other hand, the amount of binding of [14C]penicillin G to the membrane fraction from the mutant strain was reduced by ampicillin treatment alone. These results clearly indicated that dicloxacillin inhibited the beta-lactamase activity produced by the parent strain, and, consequently, ampicillin can penetrate through the outer membrane and periplasmic beta-lactamase barrier into its target sites on the cytoplasmic membrane.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blumberg P. M., Strominger J. L. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev. 1974 Sep;38(3):291–335. doi: 10.1128/br.38.3.291-335.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boman H. G., Nordström K., Normark S. Penicillin resistance in Escherichia coli K12: synergism between penicillinases and a barrier in the outer part of the envelope. Ann N Y Acad Sci. 1974 May 10;235(0):569–586. doi: 10.1111/j.1749-6632.1974.tb43291.x. [DOI] [PubMed] [Google Scholar]
- Cole M., Elson S., Fullbrook P. D. Inhibition of the -lactamases of Escherichia coli and Klebsiella aerogenes by semi-synthetic penicillins. Biochem J. 1972 Mar;127(1):295–308. doi: 10.1042/bj1270295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costerton J. W., Ingram J. M., Cheng K. J. Structure and function of the cell envelope of gram-negative bacteria. Bacteriol Rev. 1974 Mar;38(1):87–110. doi: 10.1128/br.38.1.87-110.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards J. R., Park J. T. Correlation between growth inhibition and the binding of various penicillins and cephalosporins to Staphylococcus aureus. J Bacteriol. 1969 Aug;99(2):459–462. doi: 10.1128/jb.99.2.459-462.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenwood D., O'Grady F. Potent combinations of beta-lactam antibiotics using the beta-lactamase inhibition principle. Chemotherapy. 1975;21(6):330–341. doi: 10.1159/000221878. [DOI] [PubMed] [Google Scholar]
- HAMILTON-MILLER J. M., SMITH J. T. INHIBITION OF PENICILLINASES FROM GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA BY SUBSTRATE ANALOGUES. Nature. 1964 Mar 7;201:999–1001. doi: 10.1038/201999a0. [DOI] [PubMed] [Google Scholar]
- Hamilton-Miller J. M. The demonstration and significance of synergism between -lactam antibiotics. J Med Microbiol. 1971 May;4(2):227–237. doi: 10.1099/00222615-4-2-227. [DOI] [PubMed] [Google Scholar]
- Neu H. C., Chou J. Release of surface enzymes in Enterobacteriaceae by osmotic shock. J Bacteriol. 1967 Dec;94(6):1934–1945. doi: 10.1128/jb.94.6.1934-1945.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neu H. C., Winshell E. B. Purification and characterization of penicillinases from Salmonella typhimurium and Escherichia coli. Arch Biochem Biophys. 1970 Aug;139(2):278–290. doi: 10.1016/0003-9861(70)90479-0. [DOI] [PubMed] [Google Scholar]
- Nishida M., Mine Y., Kuwahara S. Synergistic activity of ampicillin and cloxacillin. Protective effect of cloxacillin on enzymatic degradation of ampicillin by penicillinase, and therapeutic activity of mixtures of ampicillin and cloxacillin. J Antibiot (Tokyo) 1969 Apr;22(4):144–150. doi: 10.7164/antibiotics.22.144. [DOI] [PubMed] [Google Scholar]
- O'Callaghan C., Morris A. Inhibition of beta-lactamases by beta-lactam antibiotics. Antimicrob Agents Chemother. 1972 Dec;2(6):442–448. doi: 10.1128/aac.2.6.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okubo T., Inoue M., Mitsuhashi S. Antibacterial activity of combinations of cefazolin and semisynthetic penicillins. J Antibiot (Tokyo) 1975 Oct;28(10):804–808. doi: 10.7164/antibiotics.28.804. [DOI] [PubMed] [Google Scholar]
- PERRET C. J. Iodometric assay of penicillinase. Nature. 1954 Nov 27;174(4439):1012–1013. doi: 10.1038/1741012a0. [DOI] [PubMed] [Google Scholar]
- Richmond M. H., Curtis N. A. The interplay of beta-lactamases and intrinsic factors in the resistance of gram-negative bacteria to penicillins and cephalosporins. Ann N Y Acad Sci. 1974 May 10;235(0):553–568. doi: 10.1111/j.1749-6632.1974.tb43290.x. [DOI] [PubMed] [Google Scholar]
- Richmond M. H., Sykes R. B. The beta-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Physiol. 1973;9:31–88. doi: 10.1016/s0065-2911(08)60376-8. [DOI] [PubMed] [Google Scholar]
- SABATH L. D., ABRAHAM E. P. SYNERGISTIC ACTION OF PENICILLINS AND CEPHALOSPORINS AGAINST PSEUDOMONAS PYOCYANEA. Nature. 1964 Dec 12;204:1066–1069. doi: 10.1038/2041066a0. [DOI] [PubMed] [Google Scholar]
- SUTHERLAND R., BATCHELOR F. R. SYNERGISTIC ACTIVITY OF PENICILLINS AGAINST PENICILLINASE-PRODUCING GRAM-NEGATIVE BACILLI. Nature. 1964 Feb 29;201:868–869. doi: 10.1038/201868a0. [DOI] [PubMed] [Google Scholar]
- Sawai T., Nakajima S., Morohoshi T., Yamagishi S. Thermolabile repression of cephalosporinase synthesis in Citrobacter freundii. Microbiol Immunol. 1977 Nov;21(11):631–638. doi: 10.1111/j.1348-0421.1977.tb00331.x. [DOI] [PubMed] [Google Scholar]
- Strominger J. L., Blumberg P. M., Suginaka H., Umbreit J., Wickus G. G. How penicillin kills bacteria: progress and problems. Proc R Soc Lond B Biol Sci. 1971 Dec 31;179(1057):369–383. doi: 10.1098/rspb.1971.0103. [DOI] [PubMed] [Google Scholar]
- Suginaka H., Blumberg P. M., Strominger J. L. Multiple penicillin-binding components in Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Escherichia coli. J Biol Chem. 1972 Sep 10;247(17):5279–5288. [PubMed] [Google Scholar]
- Suginaka H. Comparison of the binding of penicillin G to staphylococcal L-form and its parent strain membranes. Antimicrob Agents Chemother. 1976 Mar;9(3):544–545. doi: 10.1128/aac.9.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suginaka H., Ichikawa A., Kotani S. Penicillin-resistant mechanisms in Pseudomonas aeruginosa: binding of penicillin to Pseudomonas aeruginosa KM 338. Antimicrob Agents Chemother. 1975 May;7(5):629–635. doi: 10.1128/aac.7.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suginaka H., Ichikawa A., Kotani S. Penicillin-resistant mechanisms in Pseudomonas aeruginosa: effects of penicillin G and carbenicillin on transpeptidase and C -alanine carboxypeptidase activities. Antimicrob Agents Chemother. 1974 Dec;6(6):672–675. doi: 10.1128/aac.6.6.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sykes R. B., Matthew M. The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1976 Jun;2(2):115–157. doi: 10.1093/jac/2.2.115. [DOI] [PubMed] [Google Scholar]
- Yamamoto S., Lampen J. O. Purification of plasma membrane penicillinase from Bacillus licheniformis 749/C and comparison with exoenzyme. J Biol Chem. 1976 Jul 10;251(13):4095–4101. [PubMed] [Google Scholar]
