Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1979 Nov;16(5):667–673. doi: 10.1128/aac.16.5.667

Effect of azacytidine on Simian Virus 40 nucleoprotein complexes.

M Johnson-Thompson, L J Rosenthal
PMCID: PMC352927  PMID: 93427

Abstract

Simian virus 40 nucleoprotein complexes synthesized in the presence of 5-azacytidine showed small differences in sedimentation rate on neutral sucrose and buoyant density in metrizamide and cesium chloride. Simian virus 40 deoxyribonucleic acid (DNA) I, isolated from the nucleoprotein complexes of drug-treated cultures, was found to band at a higher buoyant density and therefore had a decreased ability to bind ethidium bromide. The data indicated that these molecules were deficient in superhelical turns. Treatment with 5-azacytidine was shown to inhibit protein synthesis, which preceded the inhibition of DNA synthesis. Under the same conditions, protein synthesis was inhibited to a greater degree and occurred much faster than inhibition of DNA syntheses. Upon removal of the drug, resumption of protein and DNA synthesis occurred slowly. It is concluded that the inhibition of simian virus 40 DNA synthesis and the conformational alterations in DNA I isolated from nucleoprotein complexes result from the inhibition of protein synthesis.

Full text

PDF
667

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Green M. H., Brooks T. L. Isolation of two forms of SV40 nucleoprotein containing RNA polymerase from infected monkey cells. Virology. 1976 Jul 1;72(1):110–120. doi: 10.1016/0042-6822(76)90316-0. [DOI] [PubMed] [Google Scholar]
  2. Green M. H., Miller H. I., Hendler S. Isolation of a polyoma-nucleoprotein complex from infected mouse-cell cultures. Proc Natl Acad Sci U S A. 1971 May;68(5):1032–1036. doi: 10.1073/pnas.68.5.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  4. Johnson-Thompson M., Rosenthal L. J. Inhibition of SV40 replication by 5-azacytidine: effect on DNA synthesis and conformation. Virology. 1979 Mar;93(2):605–608. doi: 10.1016/0042-6822(79)90266-6. [DOI] [PubMed] [Google Scholar]
  5. Müller U., Zentgraf H., Eicken I., Keller W. Higher order structure of simian virus 40 chromatin. Science. 1978 Aug 4;201(4354):406–415. doi: 10.1126/science.208155. [DOI] [PubMed] [Google Scholar]
  6. Paces V., Doskocil J., Sorm F. Incorporation of 5-azacytidine into nucleic acids of Escherichia coli. Biochim Biophys Acta. 1968 Jul 23;161(2):352–360. [PubMed] [Google Scholar]
  7. Reichman M., Penman S. The mechanism of inhibition of protein synthesis by 5-azacytidine in HeLa cells. Biochim Biophys Acta. 1973 Oct 12;324(2):282–289. doi: 10.1016/0005-2787(73)90145-7. [DOI] [PubMed] [Google Scholar]
  8. Reuveni Y., Rosenthal L. J. Effect of 5-azacytidine on cytoplasmic ribosomal and messenger ribonucleic acids in BSC-1 cells. Antimicrob Agents Chemother. 1979 Feb;15(2):235–239. doi: 10.1128/aac.15.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Reuveni Y., Rosenthal L. J. Effect of azacytidine in SV40-infected BSC-1 cells. Intervirology. 1979;11(3):191–195. doi: 10.1159/000149033. [DOI] [PubMed] [Google Scholar]
  10. Sen A., Hancock R., Levine A. J. The properties and origin of the proteins in the SV40 nucleoprotein complex. Virology. 1974 Sep;61(1):11–21. doi: 10.1016/0042-6822(74)90237-2. [DOI] [PubMed] [Google Scholar]
  11. Sen A., Laipis P. J., Levine A. J. DNA replication in SV40-infected cells. XI. The properties of SV40 DNA and nucleoprotein complex synthesized in the presence of cycloheximide. Intervirology. 1975;5(3-4):122–136. doi: 10.1159/000149890. [DOI] [PubMed] [Google Scholar]
  12. Tegtmeyer P. Simian virus 40 deoxyribonucleic acid synthesis: the viral replicon. J Virol. 1972 Oct;10(4):591–598. doi: 10.1128/jvi.10.4.591-598.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Weiss J. W., Pitot H. C. Alteration of ribosomal precursor RNA in Novikoff hepatoma cells by 5-azacytidine. Studies on methylation of 45S and 32S RNA. Arch Biochem Biophys. 1974 Dec;165(2):588–596. doi: 10.1016/0003-9861(74)90286-0. [DOI] [PubMed] [Google Scholar]
  14. Weiss J. W., Pitot H. C. Effects of 5-azacytidine on nucleolar RNA and the preribosomal particles in Novikoff hepatoma cells. Biochemistry. 1975 Jan 28;14(2):316–326. doi: 10.1021/bi00673a018. [DOI] [PubMed] [Google Scholar]
  15. Yu K., Cheevers W. P. DNA synthesis in polyoma virus infection. V. Kinetic evidence for two requirements for protein synthesis during viral DNA replication. J Virol. 1976 Feb;17(2):415–421. doi: 10.1128/jvi.17.2.415-421.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zadrazil S., Fucík V., Bartl P., Sormová Z., Sorm F. The structure of DNA from Escherichia coli cultured in the presence of 5-azacytidine. Biochim Biophys Acta. 1965 Dec 9;108(4):701–703. [PubMed] [Google Scholar]
  17. von Hoff D. D., Slavik M. 5-azacytidine--a new anticancer drug with significant activity in acute myeloblastic leukemia. Adv Pharmacol Chemother. 1977;14:285–326. doi: 10.1016/s1054-3589(08)60190-8. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES