Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1979 Dec;16(6):801–807. doi: 10.1128/aac.16.6.801

Phosphorylation of streptozotocin during uptake via the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli.

J Ammer, M Brennenstuhl, P Schindler, J V Höltje, H Zähner
PMCID: PMC352957  PMID: 161156

Abstract

Mutants of Escherichia coli K-12, Staphylococcus aureus, and Bacillus subtilis defective in the general components (enzyme I, or HPr, or both) of the phosphoenolpyruvate:sugar phosphotransferase system are shown to be resistant to the antibiotic streptozotocin. It is shown here, employing 32P-labeled phosphoenolpyruvate, that wild-type cells of E. coli phosphorylate streptozotocin, whereas with a phosphotransferase system-defective mutant of E. coli the drug is recovered in an unaltered, free form. The internal accumulation of streptozotocin at the steady-state level was about 70 times that of the concentration in the external medium. The antibacterial action of streptozotocin, as well as the uptake of the drug, was inhibited by N-acetyl-D-glucosamine. The uptake of the antibiotic was extremely sensitive to p-chloromercuribenzoate. It is concluded that streptozotocin is taken up by E. coli via the phosphoenolpyruvate:sugar phosphotransferase system and consequently accumulates in the cell at first as streptozotocin-phosphate.

Full text

PDF
801

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boos W. Bacterial transport. Annu Rev Biochem. 1974;43(0):123–146. doi: 10.1146/annurev.bi.43.070174.001011. [DOI] [PubMed] [Google Scholar]
  2. Diddens H., Dorgerloh M., Zähner H. Metabolic products of microorganisms. 176. On the transport of small peptide antibiotics in bacteria. J Antibiot (Tokyo) 1979 Jan;32(1):87–90. doi: 10.7164/antibiotics.32.87. [DOI] [PubMed] [Google Scholar]
  3. Diddens H., Zähner H., Kraas E., Göhring W., Jung G. On the transport of tripeptide antibiotics in bacteria. Eur J Biochem. 1976 Jun 15;66(1):11–23. doi: 10.1111/j.1432-1033.1976.tb10420.x. [DOI] [PubMed] [Google Scholar]
  4. Fickel T. E., Gilvarg C. Transport of impermeant substances in E. coli by way of oligopeptide permease. Nat New Biol. 1973 Feb 7;241(110):161–163. doi: 10.1038/newbio241161a0. [DOI] [PubMed] [Google Scholar]
  5. Hengstenberg W. Enzymology of carbohydrate transport in bacteria. Curr Top Microbiol Immunol. 1977;77:97–126. doi: 10.1007/978-3-642-66740-4_4. [DOI] [PubMed] [Google Scholar]
  6. Hengstenberg W., Penberthy W. K., Hill K. L., Morse M. L. Phosphotransferase system of Staphylococcus aureus: its requirement for the accumulation and metabolism of galactosides. J Bacteriol. 1969 Aug;99(2):383–388. doi: 10.1128/jb.99.2.383-388.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Höltje J. V. Streptomycin uptake via an inducible polyamine transport system in Escherichia coli. Eur J Biochem. 1978 May 16;86(2):345–351. doi: 10.1111/j.1432-1033.1978.tb12316.x. [DOI] [PubMed] [Google Scholar]
  8. Ishida N., Kumagai K., Niida T., Tsuruoka T., Yumoto H. Nojirimycin, a new antibiotic. II. Isolation, characterization and biological activity. J Antibiot (Tokyo) 1967 Mar;20(2):66–71. [PubMed] [Google Scholar]
  9. Kornberg H. L., Riordan C. Uptake of galactose into Escherichia coli by facilitated diffusion. J Gen Microbiol. 1976 May;94(1):75–89. doi: 10.1099/00221287-94-1-75. [DOI] [PubMed] [Google Scholar]
  10. Lauppe H. -F., Rau G., Hengstenberg W. Synthese von [32P]phosphoenolpyruvat. FEBS Lett. 1972 Sep 15;25(2):357–357. doi: 10.1016/0014-5793(72)80524-6. [DOI] [PubMed] [Google Scholar]
  11. Lopez J. M., Thoms B. Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis. J Bacteriol. 1977 Jan;129(1):217–224. doi: 10.1128/jb.129.1.217-224.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reusser F. Mode of action of streptozotocin. J Bacteriol. 1971 Feb;105(2):580–588. doi: 10.1128/jb.105.2.580-588.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rudas B. Streptozotocin. Arzneimittelforschung. 1972 May;22(5):830–861. [PubMed] [Google Scholar]
  14. Saier M. H., Jr Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. Bacteriol Rev. 1977 Dec;41(4):856–871. doi: 10.1128/br.41.4.856-871.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wilson D. B. Cellular transport mechanisms. Annu Rev Biochem. 1978;47:933–965. doi: 10.1146/annurev.bi.47.070178.004441. [DOI] [PubMed] [Google Scholar]
  16. Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES