Abstract
Mutants of Escherichia coli K-12, Staphylococcus aureus, and Bacillus subtilis defective in the general components (enzyme I, or HPr, or both) of the phosphoenolpyruvate:sugar phosphotransferase system are shown to be resistant to the antibiotic streptozotocin. It is shown here, employing 32P-labeled phosphoenolpyruvate, that wild-type cells of E. coli phosphorylate streptozotocin, whereas with a phosphotransferase system-defective mutant of E. coli the drug is recovered in an unaltered, free form. The internal accumulation of streptozotocin at the steady-state level was about 70 times that of the concentration in the external medium. The antibacterial action of streptozotocin, as well as the uptake of the drug, was inhibited by N-acetyl-D-glucosamine. The uptake of the antibiotic was extremely sensitive to p-chloromercuribenzoate. It is concluded that streptozotocin is taken up by E. coli via the phosphoenolpyruvate:sugar phosphotransferase system and consequently accumulates in the cell at first as streptozotocin-phosphate.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boos W. Bacterial transport. Annu Rev Biochem. 1974;43(0):123–146. doi: 10.1146/annurev.bi.43.070174.001011. [DOI] [PubMed] [Google Scholar]
- Diddens H., Dorgerloh M., Zähner H. Metabolic products of microorganisms. 176. On the transport of small peptide antibiotics in bacteria. J Antibiot (Tokyo) 1979 Jan;32(1):87–90. doi: 10.7164/antibiotics.32.87. [DOI] [PubMed] [Google Scholar]
- Diddens H., Zähner H., Kraas E., Göhring W., Jung G. On the transport of tripeptide antibiotics in bacteria. Eur J Biochem. 1976 Jun 15;66(1):11–23. doi: 10.1111/j.1432-1033.1976.tb10420.x. [DOI] [PubMed] [Google Scholar]
- Fickel T. E., Gilvarg C. Transport of impermeant substances in E. coli by way of oligopeptide permease. Nat New Biol. 1973 Feb 7;241(110):161–163. doi: 10.1038/newbio241161a0. [DOI] [PubMed] [Google Scholar]
- Hengstenberg W. Enzymology of carbohydrate transport in bacteria. Curr Top Microbiol Immunol. 1977;77:97–126. doi: 10.1007/978-3-642-66740-4_4. [DOI] [PubMed] [Google Scholar]
- Hengstenberg W., Penberthy W. K., Hill K. L., Morse M. L. Phosphotransferase system of Staphylococcus aureus: its requirement for the accumulation and metabolism of galactosides. J Bacteriol. 1969 Aug;99(2):383–388. doi: 10.1128/jb.99.2.383-388.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höltje J. V. Streptomycin uptake via an inducible polyamine transport system in Escherichia coli. Eur J Biochem. 1978 May 16;86(2):345–351. doi: 10.1111/j.1432-1033.1978.tb12316.x. [DOI] [PubMed] [Google Scholar]
- Ishida N., Kumagai K., Niida T., Tsuruoka T., Yumoto H. Nojirimycin, a new antibiotic. II. Isolation, characterization and biological activity. J Antibiot (Tokyo) 1967 Mar;20(2):66–71. [PubMed] [Google Scholar]
- Kornberg H. L., Riordan C. Uptake of galactose into Escherichia coli by facilitated diffusion. J Gen Microbiol. 1976 May;94(1):75–89. doi: 10.1099/00221287-94-1-75. [DOI] [PubMed] [Google Scholar]
- Lauppe H. -F., Rau G., Hengstenberg W. Synthese von [32P]phosphoenolpyruvat. FEBS Lett. 1972 Sep 15;25(2):357–357. doi: 10.1016/0014-5793(72)80524-6. [DOI] [PubMed] [Google Scholar]
- Lopez J. M., Thoms B. Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis. J Bacteriol. 1977 Jan;129(1):217–224. doi: 10.1128/jb.129.1.217-224.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reusser F. Mode of action of streptozotocin. J Bacteriol. 1971 Feb;105(2):580–588. doi: 10.1128/jb.105.2.580-588.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudas B. Streptozotocin. Arzneimittelforschung. 1972 May;22(5):830–861. [PubMed] [Google Scholar]
- Saier M. H., Jr Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. Bacteriol Rev. 1977 Dec;41(4):856–871. doi: 10.1128/br.41.4.856-871.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson D. B. Cellular transport mechanisms. Annu Rev Biochem. 1978;47:933–965. doi: 10.1146/annurev.bi.47.070178.004441. [DOI] [PubMed] [Google Scholar]
- Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]