Abstract
Pseudomonas maltophilia is resistant to most of the commonly used antimicrobial agents including those active against Pseudomonas aeruginosa. The susceptibility of 14 clinical isolates of P. Maltophilia to 18 antimicrobial agents was determined by broth dilution testing. All organisms were susceptible to trimethoprim-sulfamethoxazole (TMP-SMZ), minocycline, and LY127935. A total of 87 and 79% of the organisms were susceptible in vitro to colistin and chloramphenicol, respectively. With the exception of sisomicin, the organisms were resistant to the aminoglycosides. Of 21 combinations of antimicrobials examined for synergy, only the combination of TMP-SMZ with carbenicillin was consistently (86%) synergistic in vitro. Supplementation of the testing media with calcium and magnesium increased the minimal inhibitory concentrations for the aminoglycosides, the penicillins, and TMP-SMZ against P. maltophilia.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer A. W., Kirby W. M., Sherris J. C., Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr;45(4):493–496. [PubMed] [Google Scholar]
- Bulger R. J., Nielson K. Effect of different media on in vitro studies of antibiotic combinations. Appl Microbiol. 1968 Jun;16(6):890–895. doi: 10.1128/am.16.6.890-895.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'amato R. F., Thornsberry C., Baker C. N., Kirven L. A. Effect of calcium and magnesium ions on the susceptibility of Pseudomonas species to tetracycline, gentamicin polymyxin B, and carbenicillin. Antimicrob Agents Chemother. 1975 May;7(5):596–600. doi: 10.1128/aac.7.5.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELION G. B., SINGER S., HITCHINGS G. H. Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J Biol Chem. 1954 Jun;208(2):477–488. [PubMed] [Google Scholar]
- Fischer J. J. Pseudomonas maltophilia endocarditis after replacement of the mitral valve: a case study. J Infect Dis. 1973 Nov;128(Suppl):771–773. doi: 10.1093/infdis/128.supplement_3.s771. [DOI] [PubMed] [Google Scholar]
- Gardner P., Griffin W. B., Swartz M. N., Kunz L. J. Nonfermentative gram-negative bacilli of nosocomial interest. Am J Med. 1970 Jun;48(6):735–749. doi: 10.1016/s0002-9343(70)80009-2. [DOI] [PubMed] [Google Scholar]
- Gilardi G. L. Pseudomonas maltophilia infections in man. Am J Clin Pathol. 1969 Jan;51(1):58–61. doi: 10.1093/ajcp/51.1.58. [DOI] [PubMed] [Google Scholar]
- Holmes B., Lapage S. P., Easterling B. G. Distribution in clinical material and identification of Pseudomonas maltophilia. J Clin Pathol. 1979 Jan;32(1):66–72. doi: 10.1136/jcp.32.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moody M. R., Young V. M., Kenton D. M. In vitro antibiotic susceptibility of pseudomonads other than Pseudomonas aeruginosa recovered from cancer patients. Antimicrob Agents Chemother. 1972 Nov;2(5):344–349. doi: 10.1128/aac.2.5.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moody M. R., Young W. M. In vitro susceptibility of Pseudomanas cepacia and Pseudomonas maltophilia to trimethoprim and trimethoprim-sulfamethoxazole. Antimicrob Agents Chemother. 1975 Jun;7(6):836–839. doi: 10.1128/aac.7.6.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nord C. E., Wadström T., Wretlind B. Synergistic effect of combinations of sulfamethoxazole, trimethoprim, and colistin against Pseudomonas maltophilia and Pseudomonas cepacia. Antimicrob Agents Chemother. 1974 Oct;6(4):521–523. doi: 10.1128/aac.6.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostenson R. C., Fields B. T., Nolan C. M. Polymyxin B and rifampin: new regimen for multiresistant Serratia marcescens infections. Antimicrob Agents Chemother. 1977 Dec;12(6):655–659. doi: 10.1128/aac.12.6.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reller L. B., Schoenknecht F. D., Kenny M. A., Sherris J. C. Antibiotic susceptibility testing of Pseudomonas aeruginosa: selection of a control strain and criteria for magnesium and calcium content in media. J Infect Dis. 1974 Nov;130(5):454–463. doi: 10.1093/infdis/130.5.454. [DOI] [PubMed] [Google Scholar]
- Semel J. D., Trenholme G. M., Harris A. A., Jupa J. E., Levin S. Pseudomonas maltophilia pseudosepticemia. Am J Med. 1978 Mar;64(3):403–406. doi: 10.1016/0002-9343(78)90219-x. [DOI] [PubMed] [Google Scholar]
- Sonnenwirth A. C. Bacteremia with and without meningitis due to Yersinia enterocolitica, Edwardsiella tarda, Comamonas terrigena, and Pseudomonas maltophilia. Ann N Y Acad Sci. 1970 Oct 30;174(2):488–502. doi: 10.1111/j.1749-6632.1970.tb45575.x. [DOI] [PubMed] [Google Scholar]
- Tilton R. C., Steingrimsson O., Ryan R. W. Susceptibilities of Pseudomonas species to tetracycline, minocycline, gentamicin, and tobramycin. Am J Clin Pathol. 1978 Apr;69(4):410–413. doi: 10.1093/ajcp/69.4.410. [DOI] [PubMed] [Google Scholar]
- Washington J. A., 2nd, Snyder R. J., Kohner P. C., Wiltse C. G., Ilstrup D. M., McCall J. T. Effect of cation content of agar on the activity of gentamicin, tobramycin, and amikacin against Pseudomonas aeruginosa. J Infect Dis. 1978 Feb;137(2):103–111. doi: 10.1093/infdis/137.2.103. [DOI] [PubMed] [Google Scholar]
- Yu V. L., Rumans L. W., Wing E. J., McLeod R., Sattler F. N., Harvey R. M., Deresinski S. C. Pseudomonas maltophilia causing heroin-associated infective endocarditis. Arch Intern Med. 1978 Nov;138(11):1667–1671. [PubMed] [Google Scholar]
