Abstract
The antimicrobial activity of indolmycin correlates with the generation time of the investigated strains. Thus, in Staphylococcus aureus ATCC 13150 with a 37-min generation time, the minimal inhibitory concentration (MIC) was 0.6 microgram ml-1, and in Bacillus subtilis ATCC 27142 with a generation time of 23 min, the MIC reached 10.5 micrograms ml-1. Competition experiments in staphylococci and B. subtilis with aromatic amino acids demonstrated that indolmycin uses the uptake systems that are responsible for tryptophan. When the Ki values of indolmycin for the uptake of the aromatic amino acids in staphylococci were compared, there was a significantly higher influence on the uptake of tryptophan with respect to phenylalanine and tyrosine. In addition, indolmycin low resistant mutants of S. aureus ATCC 13150 showed a 10- to 100-fold decrease in Km value for the uptake of tryptophan and a 10-fold decrease for tyrosine uptake. The Km value for phenylalanine remained unchanged. A significant correlation existed between the Ki values of indolmycin for the uptake of tryptophan in the wild-type strains of S. aureus and B. subtilis and the MIC against the corresponding strain. Low Ki values corresponded to low MIC. These results imply that, in addition to improvement of the antibiotic structure for target affinity, the tryptophan uptake system can be used as a test model for the structural evaluation of indolmycin with respect to an increased transport activity into bacterial cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beebe J. L. Transport alterations in a phosphatidylethanolamine-deficient mutant of Bacillus subtilis. J Bacteriol. 1972 Feb;109(2):939–942. doi: 10.1128/jb.109.2.939-942.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biagi G. L., Barbaro A. M., Gamba M. F., Guerra M. C. Partition data of penicillins determined by means of reversed-phase thin-layer chromatography. J Chromatogr. 1969 May 20;41(3):371–379. doi: 10.1016/0021-9673(64)80150-3. [DOI] [PubMed] [Google Scholar]
- Brown K. D. Formation of aromatic amino acid pools in Escherichia coli K-12. J Bacteriol. 1970 Oct;104(1):177–188. doi: 10.1128/jb.104.1.177-188.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown K. D. Maintenance and exchange of the aromatic amino acid pool in Escherichia coli. J Bacteriol. 1971 Apr;106(1):70–81. doi: 10.1128/jb.106.1.70-81.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornish-Bowden A., Eisenthal R. Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot andother methods. Biochem J. 1974 Jun;139(3):721–730. doi: 10.1042/bj1390721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Ambrosio S. M., Glover G. I., Jensen R. A. Kinetics of affinity labeling the L-tyrosine/L-phenylalanine transport system in Bacillus subtilis. Arch Biochem Biophys. 1975 Apr;167(2):754–760. doi: 10.1016/0003-9861(75)90521-4. [DOI] [PubMed] [Google Scholar]
- D'Ambrosio S. M., Glover G. I., Nelson S. O., Jensen R. A. Specificity of the tyrosine-phenylalanine transport system in Bacillus subtilis. J Bacteriol. 1973 Aug;115(2):673–681. doi: 10.1128/jb.115.2.673-681.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glover G. I., D'Ambrosio S. M., Jensen R. A. Versatile properties of a nonsaturable, homogeneous transport system in Bacilus subtilis: genetic, kinetic, and affinity labeling studies. Proc Natl Acad Sci U S A. 1975 Mar;72(3):814–818. doi: 10.1073/pnas.72.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guest J. R. Gene-protein relationships of the alpha-keto acid dehydrogenase complexes of Escherichia coli K12: Chromosomal location of the lipoamide dehydrogenase gene. J Gen Microbiol. 1974 Feb;80(2):523–532. doi: 10.1099/00221287-80-2-523. [DOI] [PubMed] [Google Scholar]
- Kay W. W., Gronlund A. F. Transport of aromatic amino acids by Pseudomonas aeruginosa. J Bacteriol. 1971 Mar;105(3):1039–1046. doi: 10.1128/jb.105.3.1039-1046.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konings W. N., Freese E. Amino acid transport in membrane vesicles of Bacillus subtilis. J Biol Chem. 1972 Apr 25;247(8):2408–2418. [PubMed] [Google Scholar]
- Kuhn J. Detection of antimetabolite activity: effects and transport of tryptophan analogs in Escherichia coli. Antimicrob Agents Chemother. 1977 Sep;12(3):322–327. doi: 10.1128/aac.12.3.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhn J., Somerville R. L. Mutant strains of Escherichia coli K12 that use D-amino acids. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2484–2487. doi: 10.1073/pnas.68.10.2484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lombardi F. J., Kaback H. R. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli. J Biol Chem. 1972 Dec 25;247(24):7844–7857. [PubMed] [Google Scholar]
- Nikaido H. Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta. 1976 Apr 16;433(1):118–132. doi: 10.1016/0005-2736(76)90182-6. [DOI] [PubMed] [Google Scholar]
- Ohta T., Okuda S., Takahashi H. Relationship between phospholipid compositions and transport activities of amino acids in Escherichia coli membrane vesicles. Biochim Biophys Acta. 1977 Apr 1;466(1):44–56. doi: 10.1016/0005-2736(77)90207-3. [DOI] [PubMed] [Google Scholar]
- Rosenfeld H., Feigelson P. Product induction in Pseudomonas acidovorans of a permease system which transports L-tryptophan. J Bacteriol. 1969 Feb;97(2):705–714. doi: 10.1128/jb.97.2.705-714.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw E., Ruscica J. The reactivity of His-57 in chymotrypsin to alkylation. Arch Biochem Biophys. 1971 Aug;145(2):484–489. doi: 10.1016/s0003-9861(71)80008-5. [DOI] [PubMed] [Google Scholar]
- Short S. A., White D. C., Kaback H. R. Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus. J Biol Chem. 1972 Jan 10;247(1):298–304. [PubMed] [Google Scholar]
- Short S. A., White D. C., Kaback H. R. Mechanisms of active transport in isolated bacterial membrane vesicles. IX. The kinetics and specificity of amino acid transport in Staphylococcus aureus membrane vesicles. J Biol Chem. 1972 Dec 10;247(23):7452–7458. [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Werner R. G., Reuter W. Interaction of indolmycin in the metabolism of tryptophan in rat liver. Arzneimittelforschung. 1979;29(1):59–63. [PubMed] [Google Scholar]
- Werner R. G., Thorpe L. F., Reuter W., Nierhaus K. H. Indolmycin inhibits prokaryotic tryptophanyl-tRNA ligase. Eur J Biochem. 1976 Sep;68(1):1–3. doi: 10.1111/j.1432-1033.1976.tb10758.x. [DOI] [PubMed] [Google Scholar]
