Abstract
Herpes simplex virus type 1 (HSV-1) infection of a rat central nervous system tumor cell line led to almost complete destruction of the cells. Cells that survived the infection could be isolated and shown to produce infectious HSV particles for variable lengths of time in culture ranging from 20 to 57 passages. Even though infectious virus production eventually ceased, the cell lines continued to produce herpes-specified proteins as measured by immunological techniques. These cells also showed herpesvirus-like structures in the electron microscope. The persistently infected cells that produced HSV antigens and bore HSV sequences were resistant to superinfection by HSV-1. The resistance was not due to failure of adsorption of the virus or to the production of interferon by the cells. The nature of the block in HSV replication in these neurotumor cells, which contain and partially express the HSV genome, is unknown, but may offer an interesting parallel to the known latency of HSV in neural tissues.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AURELIAN L., ROIZMAN B. THE HOST RANGE OF HERPES SIMPLEX VIRUS; INTERFERON, VIRAL DNA, AND ANTIGEN SYNTHESIS IN ABORTIVE INFECTION OF DOG KIDNEY CELLS. Virology. 1964 Apr;22:452–461. doi: 10.1016/0042-6822(64)90066-2. [DOI] [PubMed] [Google Scholar]
- Cook M. L., Bastone V. B., Stevens J. G. Evidence that neurons harbor latent herpes simplex virus. Infect Immun. 1974 May;9(5):946–951. doi: 10.1128/iai.9.5.946-951.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook M. L., Stevens J. G. Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect Immun. 1973 Feb;7(2):272–288. doi: 10.1128/iai.7.2.272-288.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costa J., Rabson A. S., Yee C., Tralka T. S. Immunoglobulin binding to herpes virus-induced Fc receptors inhibits virus growth. Nature. 1977 Sep 15;269(5625):251–252. doi: 10.1038/269251a0. [DOI] [PubMed] [Google Scholar]
- Dawson G., Sundarraj N., Pfeiffer S. E. Synthesis of myelin glycosphingolipids (galactosylceramide and galactosyl(3-O-sulfate)ceramide (sulfatide)) by cloned cell lines derived from mouse neurotumors. J Biol Chem. 1977 Apr 25;252(8):2777–2779. [PubMed] [Google Scholar]
- GLASGOW L. A., HABEL K. Role of polyoma virus and interferon in a herpes simplex virus infection in vitro. Virology. 1963 Mar;19:328–339. doi: 10.1016/0042-6822(63)90072-2. [DOI] [PubMed] [Google Scholar]
- Glasgow L. A., Hanshaw J. B., Merigan T. C., Petralli J. K. Interferon and cytomegalovirus in vivo and in vitro. Proc Soc Exp Biol Med. 1967 Jul;125(3):843–849. doi: 10.3181/00379727-125-32220. [DOI] [PubMed] [Google Scholar]
- HINZE H. C., WALKER D. L. Variation of herpes simplex virus in persistently infected tissue cultures. J Bacteriol. 1961 Oct;82:498–504. doi: 10.1128/jb.82.4.498-504.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hampar B., Burroughs M. A. Mechanism of persistent herpes simplex virus infection in vitro. J Natl Cancer Inst. 1969 Sep;43(3):621–634. [PubMed] [Google Scholar]
- Hampar B., Copeland M. L. Persistent Herpes Simplex Virus Infection In Vitro with Cycles of Cell Destruction and Regrowth. J Bacteriol. 1965 Jul;90(1):205–212. doi: 10.1128/jb.90.1.205-212.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAMPSON G. P., TYTELL A. A., NEMES M. M., HILLEMAN M. R. CHARACTERIZATION OF CHICK EMBRYO INTERFERON INDUCED BY A DNA VIRUS. Proc Soc Exp Biol Med. 1965 Feb;118:441–448. doi: 10.3181/00379727-118-29870. [DOI] [PubMed] [Google Scholar]
- Michalski F. J., Hsiung G. D. Persistent infection with bovine herpesvirus-1 (infectious bovine rhinotracheitis virus) in cultured hamster cells. In Vitro. 1976 Oct;12(10):682–686. doi: 10.1007/BF02797471. [DOI] [PubMed] [Google Scholar]
- Schwartz J., Elizan T. S. Chronic herpes simplex virus infection. Initiation in hamsters upon implantation of infected nonpermissive glial cells. Arch Neurol. 1973 Apr;28(4):224–230. doi: 10.1001/archneur.1973.00490220032003. [DOI] [PubMed] [Google Scholar]
- Schwartz J., Elizan T. S. Growth of herpes simplex virus in transformed glial and neuronal cells in tissue culture: ultrastructural studies. J Neuropathol Exp Neurol. 1973 Apr;32(2):303–312. doi: 10.1097/00005072-197304000-00009. [DOI] [PubMed] [Google Scholar]
- Scriba M. Extraneural localisation of herpes simplex virus in latently infected guinea pigs. Nature. 1977 Jun 9;267(5611):529–531. doi: 10.1038/267529a0. [DOI] [PubMed] [Google Scholar]
- Stevens J. G., Cook M. L. Latent herpes simplex virus in spinal ganglia of mice. Science. 1971 Aug 27;173(3999):843–845. doi: 10.1126/science.173.3999.843. [DOI] [PubMed] [Google Scholar]
- Stevens J. G., Nesburn A. B., Cook M. L. Latent herpes simplex virus from trigeminal ganglia of rabbits with recurrent eye infection. Nat New Biol. 1972 Feb 16;235(59):216–217. doi: 10.1038/newbio235216a0. [DOI] [PubMed] [Google Scholar]
- Westmoreland D., Watkins J. F. The IgG receptor induced by herpes simplex virus: studies using radioiodinated IgG. J Gen Virol. 1974 Jul;24(1):167–178. doi: 10.1099/0022-1317-24-1-167. [DOI] [PubMed] [Google Scholar]