Abstract
3H-labeled complementary DNA(sarc), complementary to the murine sarcoma virus (MSV)-specific portion of the Moloney MSV (M-MSV) genome, was prepared. M-MSV-specific RNA was then quantitated in the cytoplasm of several M-MSV-transformed, non-virus-producing, clonal NIH 3T3 cell lines. These lines, designated 71 N clones 5, 6, and 3, have been characterized previously by the degree to which they exhibit transformation properties and transcribe Moloney murine leukemia virus-related RNA (S. Salzberg and M. Green, J. Virol. 13:1001-1004, 1974; N. Tsuchida and M. Green, J. Virol. 14:587-591, 1974). By the criteria of cell morphology and agglutination by concanavalin A, cells of clone 5 are highly transformed, cells of clone 6 are almost normal in the sense that they resemble the parent NIH 3T3 cells, and cells of clone 3 are phenotypically intermediate. In the present study, the amounts of cytoplasmic MSV-specific RNA correlated well with the relative degrees of transformation of the cell lines, varying over 35-fold between the least transformed (clone 6) and most transformed (clone 5) lines. Superinfection of either clone 5 or clone 6 with Moloney murine leukemia virus resulted in a fivefold increase in the MSV-specific RNA in the cell cytoplasm. Evidence from 3H-labeled complementary DNA:cell DNA hybridization studies indicated that the quantity of M-MSV-specific RNA in the nonproducer lines was not directly related to DNA provirus copy number in the cell DNA. Although clones 5 and 6 differ greatly in transformation characteristics and in MSV-specific RNA content, they each apparently contain about two copies of MSV-specific DNA sequence per haploid genome. Thus, factors such as site of provirus integration may be of primary importance in determining virus-specific transcription and cell transformation.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birnstiel M. L., Sells B. H., Purdom I. F. Kinetic complexity of RNA molecules. J Mol Biol. 1972 Jan 14;63(1):21–39. doi: 10.1016/0022-2836(72)90519-0. [DOI] [PubMed] [Google Scholar]
- Bishop J. O. The effect of genetic complexity on the time-course of ribonucleic acid-deoxyribonucleic acid hybridization. Biochem J. 1969 Aug;113(5):805–811. doi: 10.1042/bj1130805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bondurant M. C., Hackett A. J., Schaffer F. L. Infectivity and RNA patterns as functions of high- and low-dilution passage of murine sarcoma-leukemia virus: evidence for autointerference within an oncornavirus population. J Virol. 1973 May;11(5):642–647. doi: 10.1128/jvi.11.5.642-647.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bondurant M., Hashimoto S., Green M. Methylation pattern of genomic RNA from Moloney murine leukemia virus. J Virol. 1976 Sep;19(3):998–1005. doi: 10.1128/jvi.19.3.998-1005.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bondurant M., Stoltzfus C. M., Mitchell W. M. Sequence homology between Moloney murine sarcoma virus and Moloney leukemia virus RNA. J Virol. 1976 Jul;19(1):82–89. doi: 10.1128/jvi.19.1.82-89.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
- Dina D., Beemon K., Duesberg P. The 30S Moloney sarcoma virus RNA contains leukemia virus nucleotide sequences. Cell. 1976 Oct;9(2):299–309. doi: 10.1016/0092-8674(76)90120-3. [DOI] [PubMed] [Google Scholar]
- Frankel A. E., Fischinger P. J. Nucleotide sequences in mouse DNA and RNA specific for Moloney sarcoma virus. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3705–3709. doi: 10.1073/pnas.73.10.3705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frankel A. E., Fischinger P. J. Rate of divergence of cellular sequences homologous to segments of Moloney sarcoma virus. J Virol. 1977 Jan;21(1):153–160. doi: 10.1128/jvi.21.1.153-160.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frankel A. E., Gilbert J. H., Fischinger P. J. Effect of helper virus on the number of murine sarcoma virus DNA copies in infected mammalian cells. J Virol. 1977 Sep;23(3):492–502. doi: 10.1128/jvi.23.3.492-502.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frankel A. E., Neubauer R. L., Fischinger P. J. Fractionation of DNA nucleotide transcripts from Moloney sarcoma virus and isolation of sarcoma virus-specific complementary DNA. J Virol. 1976 May;18(2):481–490. doi: 10.1128/jvi.18.2.481-490.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Getz M. J., Reiman H. M., Jr, Siegal G. P., Quinlan T. J., Proper J., Elder P. K., Moses H. L. Gene expression in chemically transformed mouse embryo cells: selective enhancement of the expression of C type RNA tumor virus genes. Cell. 1977 Aug;11(4):909–921. doi: 10.1016/0092-8674(77)90302-6. [DOI] [PubMed] [Google Scholar]
- Green M. R., Chinnadurai G., Mackey J. K., Green M. A unique pattern of integrated viral genes in hamster cells transformed by highly oncogenic human adenovirus 12. Cell. 1976 Mar;7(3):419–428. doi: 10.1016/0092-8674(76)90172-0. [DOI] [PubMed] [Google Scholar]
- Hartley J. W., Rowe W. P. Production of altered cell foci in tissue culture by defective Moloney sarcoma virus particles. Proc Natl Acad Sci U S A. 1966 Apr;55(4):780–786. doi: 10.1073/pnas.55.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu S., Davidson N. A heteroduplex study of the sequence relationships between the RNAs of M-MSV and M-MLV. Cell. 1977 Mar;10(3):469–477. doi: 10.1016/0092-8674(77)90034-4. [DOI] [PubMed] [Google Scholar]
- Lindberg U., Darnell J. E. SV40-specific RNA in the nucleus and polyribosomes of transformed cells. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1089–1096. doi: 10.1073/pnas.65.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maisel J., Klement V., Lai M. M., Ostertag W., Duesberg P. Ribonucleic acid components of murine sarcoma and leukemia viruses. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3536–3540. doi: 10.1073/pnas.70.12.3536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peebles P. T., Scolnick E. M., Howk R. S. Increased sarcoma virus RNA in cells transformed by leukemia viruses: model for leukemogenesis. Science. 1976 Jun 11;192(4244):1143–1145. doi: 10.1126/science.179144. [DOI] [PubMed] [Google Scholar]
- Reitz M. S., Jr, Abrell J. W., Trainor C. D., Gallo R. C. Precipitation of nucleic acids with cetyltrimethylammonium bromide: a method for preparing viral and cellular DNA polymerase products for cesium sulfate density gradient analysis. Biochem Biophys Res Commun. 1972 Oct 6;49(1):30–38. doi: 10.1016/0006-291x(72)90005-8. [DOI] [PubMed] [Google Scholar]
- Riggin C. H., Bondurant M. C., Mitchell W. M. Differences between murine leukemia virus and murine sarcoma virus: effects of virion age and multiplicity of infection on viral RNA. Intervirology. 1974;2(4):209–221. doi: 10.1159/000149426. [DOI] [PubMed] [Google Scholar]
- Rowe W. P., Pugh W. E., Hartley J. W. Plaque assay techniques for murine leukemia viruses. Virology. 1970 Dec;42(4):1136–1139. doi: 10.1016/0042-6822(70)90362-4. [DOI] [PubMed] [Google Scholar]
- Salzberg S., Green M. Activation of the murine sarcoma virus genome after infection with the murine leukemia virus as determined by cell agglutination. J Virol. 1974 May;13(5):1001–1004. doi: 10.1128/jvi.13.5.1001-1004.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schincariol A. L., Joklik W. K. Early synthesis of virus-specific RNA and DNA in cells rapidly transformed with Rous sarcoma virus. Virology. 1973 Dec;56(2):532–548. doi: 10.1016/0042-6822(73)90056-1. [DOI] [PubMed] [Google Scholar]
- Scolnick E. M., Howk R. S., Anisowicz A., Peebles P. T., Scher C. D., Parks W. P. Separation of sarcoma virus-specific and leukemia virus-specific genetic sequences of Moloney sarcoma virus. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4650–4654. doi: 10.1073/pnas.72.11.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stehelin D., Guntaka R. V., Varmus H. E., Bishop J. M. Purification of DNA complementary to nucleotide sequences required for neoplastic transformation of fibroblasts by avian sarcoma viruses. J Mol Biol. 1976 Mar 5;101(3):349–365. doi: 10.1016/0022-2836(76)90152-2. [DOI] [PubMed] [Google Scholar]
- Straus N. A., Bonner T. I. Temperature dependence of RNA-DNA hybridization kinetics. Biochim Biophys Acta. 1972 Aug 16;277(1):87–95. doi: 10.1016/0005-2787(72)90355-3. [DOI] [PubMed] [Google Scholar]
- Tsuchida N., Green M. Intracellular viral RNA species in mouse cells nonproductively transformed by the murine sarcoma virus. J Virol. 1974 Sep;14(3):587–591. doi: 10.1128/jvi.14.3.587-591.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wetmur J. G., Davidson N. Kinetics of renaturation of DNA. J Mol Biol. 1968 Feb 14;31(3):349–370. doi: 10.1016/0022-2836(68)90414-2. [DOI] [PubMed] [Google Scholar]