Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1979 Jan;29(1):161–169. doi: 10.1128/jvi.29.1.161-169.1979

Effect of actinomycin D on the expression of herpes simplex virus-common surface antigen in cells transformed by herpes simplex virus type 2.

S Kimura, K Okazaki, N Yoshida, Y Ohnishi
PMCID: PMC353092  PMID: 219215

Abstract

Using rabbit antiserum hyperimmune to herpes simplex virus (HSV) type 1, the expression of HSV-common surface antigen(s) was studied by indirect immunofluorescence tests in cells transformed by HSV type 2 and in derived tumor cells. The following results were obtained. (i) Antiserum to HSV type 1 reacted specifically with surface antigen present on the plasma membrane of both HSV type 2-infected and HSV type 2-transformed hamster cells. (ii) The expression of this antigen was enhanced in the absence of active protein synthesis in transformed cells, but not in tumor cells, after culture for 3 to 5 h at 37 degrees C. (iii) This enhancement of expression was maintained for 20 h in the presence of actinomycin D, but this prolonged expression required active protein synthesis. (iv) The enhancing effect observed in the presence of actinomycin D continued for some time after removal of the drug, for example, for 20 h after 5 h of treatment with 2 microgram/ml of actinomycin D per ml. Actinomycin D had no detectable effect on antigen expression in tumor cells. (v) The protease inhibitor antipain inhibited the actinomycin D-enhanced expression without causing significant cell damage but did not modify the transient enhanced expression of antigen when cells were seeded in the absence of actinomycin D. These results indicate that in transformed cells antigen expression can be enhanced in at least two ways.

Full text

PDF
161

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd A. L., Orme T. W. Transformation of mouse cells after infection with ultraviolet irradiation-inactivated herpes simplex virus type 2. Int J Cancer. 1975 Oct 15;16(4):526–538. doi: 10.1002/ijc.2910160403. [DOI] [PubMed] [Google Scholar]
  2. Collard W., Thornton H., Green M. Cells transformed by human Herpesvirus type 2 transcribe virus-specific RNA sequences shared by Herpesvirus types 1 and 2. Nat New Biol. 1973 Jun 27;243(130):264–266. doi: 10.1038/newbio243264a0. [DOI] [PubMed] [Google Scholar]
  3. Cooper H. L., Braverman R. The mechanism by which actinomycin D inhibits protein synthesis in animal cells. Nature. 1977 Oct 6;269(5628):527–529. doi: 10.1038/269527a0. [DOI] [PubMed] [Google Scholar]
  4. Davis D. B., Kingsbury D. T. Quantitation of the viral DNA present in cells transformed by UV-irradiated herpes simplex virus. J Virol. 1976 Mar;17(3):788–793. doi: 10.1128/jvi.17.3.788-793.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duff R., Rapp F. Oncogenic transformation of hamster embryo cells after exposure to inactivated herpes simplex virus type 1. J Virol. 1973 Aug;12(2):209–217. doi: 10.1128/jvi.12.2.209-217.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duff R., Rapp F. Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultraviolet-irradiated herpes simplex virus type 2. J Virol. 1971 Oct;8(4):469–477. doi: 10.1128/jvi.8.4.469-477.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Epstein S. S., Arnold E., Andrea J., Bass W., Bishop Y. Detection of chemical mutagens by the dominant lethal assay in the mouse. Toxicol Appl Pharmacol. 1972 Oct;23(2):288–325. doi: 10.1016/0041-008x(72)90192-5. [DOI] [PubMed] [Google Scholar]
  8. Esparza J., Purifoy D. J., Schaffer P. A., Benyesh-Melnick M. Isolation, complementation and preliminary phenotypic characterization of temperature-sensitive mutants of herpes simplex virus type 2. Virology. 1974 Feb;57(2):554–565. doi: 10.1016/0042-6822(74)90194-9. [DOI] [PubMed] [Google Scholar]
  9. Flannery V. L., Courtney R. J., Schaffer P. A. Expression of an early, nonstructural antigen of herpes simplex virus in cell transformed in vitro by herpes simplex virus. J Virol. 1977 Jan;21(1):284–291. doi: 10.1128/jvi.21.1.284-291.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frenkel N., Locker H., Cox B., Roizman B., Rapp F. Herpes simplex virus DNA in transformed cells: sequence complexity in five hamster cell lines and one derived hamster tumor. J Virol. 1976 Jun;18(3):885–893. doi: 10.1128/jvi.18.3.885-893.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haruta M. Teratogenic effects of actinomycin-D on ddO mouse embryos. Acta Pathol Jpn. 1968 Aug;18(3):267–286. doi: 10.1111/j.1440-1827.1968.tb00054.x. [DOI] [PubMed] [Google Scholar]
  12. Kimura S., Esparza J., Benyesh-Melnick M., Schaffer P. A. Enhanced replication of temperature-sensitive mutants of herpes simplex virus type 2 (HSV-2) at the nonpermissive temperature in cells transformed by HSV-2. Intervirology. 1974;3(3):162–169. doi: 10.1159/000149752. [DOI] [PubMed] [Google Scholar]
  13. Kimura S., Flannery V. L., Levy B., Schaffer P. A. Oncogenic transformation of primary hamster cells by herpes simplex virus type 2 (hsv-2) and an hsv-2 temperature-sensitive mutant. Int J Cancer. 1975 May 15;15(5):786–798. doi: 10.1002/ijc.2910150510. [DOI] [PubMed] [Google Scholar]
  14. Kucera L. S., Gusdon J. P. Transformation of human embryonic fibroblasts by photodynamically inactivated herpes simplex virus, type 2 at supra-optimal temperature. J Gen Virol. 1976 Feb;30(2):257–261. doi: 10.1099/0022-1317-30-2-257. [DOI] [PubMed] [Google Scholar]
  15. Kutinová L., Vonka V., Broucek J. Increased oncogenicity and synthesis of herpesvirus antigens in hamster cells exposed to herpes simplex type-2 virus. J Natl Cancer Inst. 1973 Mar;50(3):759–766. doi: 10.1093/jnci/50.3.759. [DOI] [PubMed] [Google Scholar]
  16. Macnab J. C., Timbury M. C. Complementation of ts mutants by a herpes simplex virus ts-transformed cell line. Nature. 1976 May 20;261(5557):233–235. doi: 10.1038/261233a0. [DOI] [PubMed] [Google Scholar]
  17. Macnab J. C. Transformation of rat embryo cells by temperature-sensitive mutants of herpes simplex virus. J Gen Virol. 1974 Jul;24(1):143–153. doi: 10.1099/0022-1317-24-1-143. [DOI] [PubMed] [Google Scholar]
  18. Meyn M. S., Rossman T., Troll W. A protease inhibitor blocks SOS functions in Escherichia coli: antipain prevents lambda repressor inactivation, ultraviolet mutagenesis, and filamentous growth. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1152–1156. doi: 10.1073/pnas.74.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Minson A. C., Thouless M. E., Eglin R. P., Darby G. The detection of virus DNA sequences in a herpes type 2 transformed hamster cell line (333-8-9). Int J Cancer. 1976 Apr 15;17(4):493–500. doi: 10.1002/ijc.2910170412. [DOI] [PubMed] [Google Scholar]
  20. Munyon W., Kraiselburd E., Davis D., Mann J. Transfer of thymidine kinase to thymidine kinaseless L cells by infection with ultraviolet-irradiated herpes simplex virus. J Virol. 1971 Jun;7(6):813–820. doi: 10.1128/jvi.7.6.813-820.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rapp F., Duff R. In vitro cell transformation by herpesviruses. Fed Proc. 1972 Nov-Dec;31(6):1660–1668. [PubMed] [Google Scholar]
  22. Reed C. L., Cohen G. H., Rapp F. Detection of a virus-specific antigen on the surface of herpes simplex virus-transformed cells. J Virol. 1975 Mar;15(3):668–670. doi: 10.1128/jvi.15.3.668-670.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roberts J. W., Roberts C. W. Proteolytic cleavage of bacteriophage lambda repressor in induction. Proc Natl Acad Sci U S A. 1975 Jan;72(1):147–151. doi: 10.1073/pnas.72.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schaffer P. A., Aron G. M., Biswal N., Benyesh-Melnick M. Temperature-sensitive mutants of herpes simplex virus type 1: isolation, complementation and partial characterization. Virology. 1973 Mar;52(1):57–71. doi: 10.1016/0042-6822(73)90398-x. [DOI] [PubMed] [Google Scholar]
  25. Suda H., Aoyagi T., Hamada M., Takeuchi T., Umezawa H. Antipain, a new protease inhibitor isolated from actinomycetes. J Antibiot (Tokyo) 1972 Apr;25(4):263–266. doi: 10.7164/antibiotics.25.263. [DOI] [PubMed] [Google Scholar]
  26. Svoboda D., Reddy J., Harris C. Invasive tumors induced in rats with actinomycin D. Cancer Res. 1970 Aug;30(8):2271–2279. [PubMed] [Google Scholar]
  27. Takahashi M., Yamanishi K. Transformation of hamster embryo and human embryo cells by temperature sensitive mutants of herpes simplex virus type 2. Virology. 1974 Sep;61(1):306–311. doi: 10.1016/0042-6822(74)90267-0. [DOI] [PubMed] [Google Scholar]
  28. Vestergaard B. F., Grauballe P. C. Crossed immunoelectrophoretic identification of partially purified type common and type specific herpes simplex virus glycoprotein antigens. Proc Soc Exp Biol Med. 1977 Nov;156(2):349–353. doi: 10.3181/00379727-156-39934. [DOI] [PubMed] [Google Scholar]
  29. Yata J., Klein G., Hewetson J., Gergely L. Effect of metabolic inhibitors on membrane immunofluorescence reactivity of established Burkitt lymphoma cell lines. Int J Cancer. 1970 May 15;5(3):394–403. doi: 10.1002/ijc.2910050314. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES