Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1979 Jan;29(1):312–321. doi: 10.1128/jvi.29.1.312-321.1979

Growth and Maturation of a Vesicular Stomatitis Virus Temperature-Sensitive Mutant and Its Central Nervous System Isolate

Joseph V Hughes 1, Terry C Johnson 1, Stanley G Rabinowitz 2, Mauro C Dal Canto 3
PMCID: PMC353121  PMID: 219225

Abstract

A temperature-sensitive (ts) mutant of vesicular stomatitis virus (VSV), tsG31, produces a prolonged central nervous system disease in mice with pathological features similar to those of slow viral diseases. tsG31 and the subsequent virus recovered from the central nervous system (tsG31BP) of mice infected with tsG31 were compared with the parental wild-type (WT) VSV for plaque morphology, growth kinetics, thermal sensitivity of the virions, and viral protein synthesis and maturation. Several properties of the central nervous system isolate distinguished this virus from the original tsG31 and the WT VSV. The WT VSV produced clear plaques with complete cell lysis, and the tsG31 produced diffuse plaques and incomplete cell lysis, whereas the tsG31BP had clear plaques similar to those of the WT VSV. Although plaque morphology suggested that tsG31BP virus was a revertant to the WT, growth kinetics in either BHK-21 or neuroblastoma (N-18) cells indicated that this virus was similar to tsG31, with a productive cycle at 31°C and no infectious virus at 39°C. At 37°C, however, the tsG31BP matured much slower than did the original tsG31 (and produced only 1% of the yield measured at 31°C). WT VSV produced similar quantities of infectious virions at 31, 37, and 39°C. The lack of infectious virions at 39°C for the ts mutants was presumably not due to a greater rate of inactivation at 39°C. Unlike WT VSV, which synthesized viral proteins equally well at all three temperatures, tsG31 had a reduced synthesis of all the structural proteins at 37 and 39°C, compared with that at 31°C; the formation of the M protein was most temperature sensitive. In addition, fractionation of the infected cells indicated that the incorporation of the M and N proteins into the cellular membranes was also disrupted at the higher, nonpermissive temperatures. Several characteristics of protein synthesis during tsG31BP infection at 39°C distinguished this virus from tsG31: (i) no mature viral proteins were detected at 39°C; (ii) several host proteins were [ill], suggesting that the virus was incapable of completely depressing host macromolecular synthesis; and (iii) a great proportion of the incorporated radioactivity was found in unusually high-molecular-weight proteins. In addition, at 37°C, the tsG31BP virus showed a decreased synthesis of viral proteins and reduced assembly of the viral structural proteins.

Full text

PDF
312

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dal Canto M. C., Rabinowitz S. G., Johnson T. C. Status spongiousus resulting from intracerebral infection of mice with temperature-sensitive mutants of vesicular stomatitis virus. Br J Exp Pathol. 1976 Jun;57(3):321–330. [PMC free article] [PubMed] [Google Scholar]
  2. Doyle M., Holland J. J. Prophylaxis and immunization in mice by use of virus-free defective T particles to protect against intracerebral infection by vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2105–2108. doi: 10.1073/pnas.70.7.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HOLLAND J. J., McLAREN L. C. Improved method for staining cell monolayers for virus plaque counts. J Bacteriol. 1959 Oct;78:596–597. doi: 10.1128/jb.78.4.596-597.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hunt L. A., Summers D. F. Association of vesicular stomatitis virus proteins with HeLa cell membranes and released virus. J Virol. 1976 Dec;20(3):637–645. doi: 10.1128/jvi.20.3.637-645.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Knipe D. M., Baltimore D., Lodish H. F. Maturation of viral proteins in cells infected with temperature-sensitive mutants of vesicular stomatitis virus. J Virol. 1977 Mar;21(3):1149–1158. doi: 10.1128/jvi.21.3.1149-1158.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Knipe D. M., Baltimore D., Lodish H. F. Separate pathways of maturation of the major structural proteins of vesicular stomatitis virus. J Virol. 1977 Mar;21(3):1128–1139. doi: 10.1128/jvi.21.3.1128-1139.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Knipe D., Lodish H. F., Baltimore D. Analysis of the defects of temperature-sensitive mutants of vesicular stomatitis virus: intracellular degradation of specific viral proteins. J Virol. 1977 Mar;21(3):1140–1148. doi: 10.1128/jvi.21.3.1140-1148.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lafay F. Envelope proteins of vesicular stomatitis virus: effect of temperature-sensitive mutations in complementation groups III and V. J Virol. 1974 Nov;14(5):1220–1228. doi: 10.1128/jvi.14.5.1220-1228.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pringle C. R. Genetic characteristics of conditional lethal mutants of vesicular stomatitis virus induced by 5-fluorouracil, 5-azacytidine, and ethyl methane sulfonate. J Virol. 1970 May;5(5):559–567. doi: 10.1128/jvi.5.5.559-567.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Printz P., Wagner R. R. Temperature-sensitive mutants of vesicular stomatitis virus: synthesis of virus-specific proteins. J Virol. 1971 May;7(5):651–662. doi: 10.1128/jvi.7.5.651-662.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rabinowitz S. G., Dal Canto M. C., Johnson T. C. Comparison of central nervous system disease produced by wild-type and temperature-sensitive mutants of vesicular stomatitis virus. Infect Immun. 1976 Apr;13(4):1242–1249. doi: 10.1128/iai.13.4.1242-1249.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rabinowitz S. G., Johnson T. C., Dal Canto M. C. The uncoupled relationship between the temperature-sensitivity and neurovirulence in mice of mutants of vesicular stomatitis virus. J Gen Virol. 1977 May;35(2):237–249. doi: 10.1099/0022-1317-35-2-237. [DOI] [PubMed] [Google Scholar]
  14. Wagner R. R. Pathogenicity and immunogenicity for mice of temperature-sensitive mutants of vesicular stomatitis virus. Infect Immun. 1974 Aug;10(2):309–315. doi: 10.1128/iai.10.2.309-315.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weck P. K., Wagner R. R. Inhibition of RNA synthesis in mouse myeloma cells infected with vesicular stomatitis virus. J Virol. 1978 Mar;25(3):770–780. doi: 10.1128/jvi.25.3.770-780.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES