Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1979 Mar;29(3):833–839. doi: 10.1128/jvi.29.3.833-839.1979

Infectivity of Proviral DNA from Avian Sarcoma Virus-Transformed Mammalian Cells

Françoise Catala 1, Philippe Vigier 1
PMCID: PMC353241  PMID: 221676

Abstract

The number of Rous viral genomes in the cellular DNA from two subclones (RS2/3, RS2/6) derived from the same clone of hamster BHK-21 cells transformed by Rous sarcoma virus was determined by hybridization with viral complementary DNA made in vitro, and the capacity of the cellular DNA to infect (transfect) chicken embryo fibroblasts was compared before and after shearing this DNA to about the size of the provirus (6 × 106 to 7 × 106 daltons). The two subclones differed widely both in their capacity to give rise to virus (inducibility) after fusion with chicken embryo fibroblasts and in level of expression of viral proteins. It was shown that cells of both subclones contain a single copy of Rous DNA and yield infectious DNA. However, whereas transfection of chicken embryo fibroblasts was successful with both unsheared (≥18 × 106 daltons) and sheared DNA from the most inducible subclone (RS2/3 subclone), which also expresses viral proteins to an appreciable amount, transfection with DNA from the least inducible subclone (RS2/6 subclone), in which viral proteins are not expressed, succeeded only with sheared DNA. It was then about as successful as with sheared or unsheared RS2/3 DNA. The lack of infectivity of unsheared RS2/6 DNA may be explained by the hypothesis proposed by Cooper and Temin (G. M. Cooper and H. T. Temin, J. Virol. 17:422-430, 1976) to explain the lack of infectivity of DNA from certain chicken cells producing spontaneously low amounts of RAV-0 and resistant to exogenous RAV-0 infection, that is, that the viral genome (proviral DNA) is linked to a cis-acting control element which blocks its expression. This linkage might originate, in RS2/6 cells, from translocation of cellular DNA containing the single proviral copy.

Full text

PDF
833

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aupoix M., Vigier P. Expression of viral proteins in mammalian cells transformed by avian sarcoma viruses. Int J Cancer. 1976 Dec 15;18(6):787–797. doi: 10.1002/ijc.2910180610. [DOI] [PubMed] [Google Scholar]
  2. BERNS K. I., THOMAS C. A., Jr ISOLATION OF HIGH MOLECULAR WEIGHT DNA FROM HEMOPHILUS INFLUENZAE. J Mol Biol. 1965 Mar;11:476–490. doi: 10.1016/s0022-2836(65)80004-3. [DOI] [PubMed] [Google Scholar]
  3. Boettiger D. Virogenic nontransformed cells isolated following infection of normal rat kidney cells with B77 strain Rous sarcoma virus. Cell. 1974 Sep;3(1):71–76. doi: 10.1016/0092-8674(74)90042-7. [DOI] [PubMed] [Google Scholar]
  4. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  5. Coffin J. M., Temin H. M. Hybridization of Rous sarcoma virus deoxyribonucleic acid polymerase product and ribonucleic acids from chicken and rat cells infected with Rous sarcoma virus. J Virol. 1972 May;9(5):766–775. doi: 10.1128/jvi.9.5.766-775.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper G. M., Temin H. M. Infectious rous sarcoma virus and reticuloendotheliosis virus DNAs. J Virol. 1974 Nov;14(5):1132–1141. doi: 10.1128/jvi.14.5.1132-1141.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper G. M., Temin H. M. Lack of infectivity of the endogenous avian leukosis virus-related genes in the DNA of uninfected chicken cells. J Virol. 1976 Feb;17(2):422–430. doi: 10.1128/jvi.17.2.422-430.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deng C. T., Boettiger D., Macpherson I., Varmus H. E. The persistence and expression of virus-specific DNA in revertants of Rous sarcoma virus-transformed BHK-21 cells. Virology. 1974 Dec;62(2):512–521. doi: 10.1016/0042-6822(74)90411-5. [DOI] [PubMed] [Google Scholar]
  9. Deng C. T., Stehelin D., Bishop J. M., Varmus H. E. Characteristics of virus-specific RNA in avian sarcoma virus-transformed BHK-21 cells and revertants. Virology. 1977 Jan;76(1):313–330. doi: 10.1016/0042-6822(77)90305-1. [DOI] [PubMed] [Google Scholar]
  10. Eisenman R. N., Vogt V. M. The biosynthesis of oncovirus proteins. Biochim Biophys Acta. 1978 Apr 6;473(3-4):187–239. doi: 10.1016/0304-419x(78)90014-8. [DOI] [PubMed] [Google Scholar]
  11. GOLDE A., VIGIER P. Growth of Rous sarcoma virus and cells in nonconfluent chick embryo monolayers. Virology. 1961 Sep;15:36–46. doi: 10.1016/0042-6822(61)90074-5. [DOI] [PubMed] [Google Scholar]
  12. Garapin A. C., Varmus H. E., Faras A. J., Levinson W. E., Bishop J. M. RNA-directed DNA synthesis by virions of Rous sarcoma virus: further characterization of the templates and the extent of their transcription. Virology. 1973 Mar;52(1):264–274. doi: 10.1016/0042-6822(73)90414-5. [DOI] [PubMed] [Google Scholar]
  13. Graham F. L., van der Eb A. J., Heijneker H. L. Size and location of the transforming region in human adenovirus type 5 DNA. Nature. 1974 Oct 25;251(5477):687–691. doi: 10.1038/251687a0. [DOI] [PubMed] [Google Scholar]
  14. Hill M., Hillova J. RNA and DNA forms of the genetic material of C-type viruses and the integrated state of the DNA form in the cellular chromosome. Biochim Biophys Acta. 1974 Apr 29;355(1):7–48. doi: 10.1016/0304-419x(74)90006-7. [DOI] [PubMed] [Google Scholar]
  15. Hillova J., Hill M., Goubin G., Dantchev D. Infectivity of Rous sarcoma cell DNA: comparison of two techniques of transfection assay. Intervirology. 1975;5(6):367–374. doi: 10.1159/000149935. [DOI] [PubMed] [Google Scholar]
  16. Khoury A. T., Deering R. A. Sedimentation of DNA of Dictyostelium discoideum lysed on alkaline sucrose gradients: role of single-strand breaks in gamma ray lethality of sensitive and resistant strains. J Mol Biol. 1973 Sep 15;79(2):267–284. doi: 10.1016/0022-2836(73)90005-3. [DOI] [PubMed] [Google Scholar]
  17. Leong J. A., Garapin A. C., Jackson N., Fanshier L., Levinson W., Bishop J. M. Virus-specific ribonucleic acid in cells producing rous sarcoma virus: detection and characterization. J Virol. 1972 Jun;9(6):891–902. doi: 10.1128/jvi.9.6.891-902.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McConaughy B. L., McCarthy B. J. The interaction of oligodeoxynucleotides with denatured DNA. Biochim Biophys Acta. 1967 Nov 21;149(1):180–189. doi: 10.1016/0005-2787(67)90700-9. [DOI] [PubMed] [Google Scholar]
  19. Popovic M., Svoboda J., Suni J., Vaheri A., Pontén J. Expression of viral protein P27 in avian sarcoma virus-transformed mammalian cells and helper-dependent rescue of Rous sarcoma virus. Int J Cancer. 1977 Jun 15;19(6):834–842. doi: 10.1002/ijc.2910190615. [DOI] [PubMed] [Google Scholar]
  20. Prensky W., Steffensen D. M., Hughes W. L. The use of iodinated RNA for gene localization. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1860–1864. doi: 10.1073/pnas.70.6.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reynolds F. H., Jr, Hanson C. A., Aaronson S. A., Stephenson J. R. Type C viral gag gene expression in chicken embryo fibroblasts and avian sarcoma virus-transformed mammalian cells. J Virol. 1977 Jul;23(1):74–79. doi: 10.1128/jvi.23.1.74-79.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  23. Simkovic D., Popovic M., Svec J., Grófová M., Valentová N. Continuous production of avian sarcoma virus B77 by rat tumour cells in tissue culture. Int J Cancer. 1969 Jan 15;4(1):80–85. doi: 10.1002/ijc.2910040111. [DOI] [PubMed] [Google Scholar]
  24. Smith R. E., Bernstein E. H. Production and purification of large amounts of Rous sarcoma virus. Appl Microbiol. 1973 Mar;25(3):346–353. doi: 10.1128/am.25.3.346-353.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith R. E., Nebes S., Leis J. Production of large amounts of 35S RNA and complementary DNA from avian RNA tumor viruses. Anal Biochem. 1977 Jan;77(1):226–234. doi: 10.1016/0003-2697(77)90308-6. [DOI] [PubMed] [Google Scholar]
  26. Svec J., Hilubinová K., Lizorová V., Thurzo V. Mammalian tropism of B77(RBI) virus. Expression of virus genome in the hamster sarcoma cell clones. Neoplasma. 1975;22(2):133–145. [PubMed] [Google Scholar]
  27. Svoboda J., Hlozánek I., Korb J., Mach O. Failure to obtain transfection with XC mitochondrial DNA. Eur J Cancer. 1975 Apr;11(4):247–250. doi: 10.1016/0014-2964(75)90005-5. [DOI] [PubMed] [Google Scholar]
  28. Svoboda J., Popovic M., Sainerová H., Mach O., Shoyab M., Baluda M. A. Incomplete viral genome in a non-virogenic mouse tumour cell line (RVP3) transformed by Prague strain of avian sarcoma virus. Int J Cancer. 1977 Jun 15;19(6):851–858. doi: 10.1002/ijc.2910190617. [DOI] [PubMed] [Google Scholar]
  29. Varmus H. E., Vogt P. K., Bishop J. M. Integration of deoxyribonucleic acid specific for Rous sarcoma virus after infection of permissive and nonpermissive hosts. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3067–3071. doi: 10.1073/pnas.70.11.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vigier P., Bataillon G. Persistence of Rous sarcoma virus in transformed nonpermissive cells: relationship between virus induction by association with permissive cells and gs antigen content of transformed cells. Virology. 1971 Jul;45(1):309–312. doi: 10.1016/0042-6822(71)90139-5. [DOI] [PubMed] [Google Scholar]
  31. Vigier P., Montagnier L. Infectious DNA recovered from avian tumor-virus-producing cells. Int J Cancer. 1975 Jan 15;15(1):67–77. doi: 10.1002/ijc.2910150109. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES