Abstract
Escherichia coli Q13 was infected with bacteriophage Q beta and subjected to energy source shift-down (from glucose-minimal to succinate-minimal medium) 20 min after infection. Production of progeny phage was about fourfold slower in down-shifted cultures than in the cultures in glucose medium. Shift-down did not affect the rate of phage RNA replication, as measured by the rate of incorporation of [14C]uracil in the presence of rifampin, with appropriate correction for the reduced entry of exogenous uracil into the UTP pool. Phage coat protein synthesis was three- to sixfold slower in down-shifted cells than in exponentially growing cells, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The polypeptide chain propagation rate in infected cells was unaffected by the down-shift. Thus, the reduced production of progeny phage in down-shifted cells appears to result from control of phage protein synthesis at the level of initiation of translation. The reduction in the rate of Q beta coat protein synthesis is comparable to the previously described reduction in the rate of synthesis of total E. coli protein and of beta-galactosidase, implying that the mechanism which inhibits translation in down-shifted cells is neither messenger specific nor specific for 5' proximal cistrons. The intracellular ATP pool size was nearly constant after shift-down; general energy depletion is thus not a predominant factor. The GTP pool, by contrast, declined by about 40%. Also, ppGpp did not accumulate in down-shifted, infected cells in the presence of rifampin, indicating that ppGpp is not the primary effector of this translational inhibition.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blumenthal T., Landers T. A., Weber K. Bacteriophage Q replicase contains the protein biosynthesis elongation factors EF Tu and EF Ts. Proc Natl Acad Sci U S A. 1972 May;69(5):1313–1317. doi: 10.1073/pnas.69.5.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cashel M., Lazzarini R. A., Kalbacher B. An improved method for thin-layer chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J Chromatogr. 1969 Mar 11;40(1):103–109. doi: 10.1016/s0021-9673(01)96624-5. [DOI] [PubMed] [Google Scholar]
- Cashel M. Regulation of bacterial ppGpp and pppGpp. Annu Rev Microbiol. 1975;29:301–318. doi: 10.1146/annurev.mi.29.100175.001505. [DOI] [PubMed] [Google Scholar]
- Cashel M. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem. 1969 Jun 25;244(12):3133–3141. [PubMed] [Google Scholar]
- Casjens S., King J. P22 morphogenesis. I: Catalytic scaffolding protein in capsid assembly. J Supramol Struct. 1974;2(2-4):202–224. doi: 10.1002/jss.400020215. [DOI] [PubMed] [Google Scholar]
- Engelberg H., Brudo I., Israeli-Reches M. Discriminative effect of rifampin of RNA replication of various RNA bacteriophages. J Virol. 1975 Aug;16(2):340–347. doi: 10.1128/jvi.16.2.340-347.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelberg H. Inhibition of RNA bacteriophage replication by rifampicin. J Mol Biol. 1972 Jul 28;68(3):541–546. doi: 10.1016/0022-2836(72)90107-6. [DOI] [PubMed] [Google Scholar]
- Erikson R. L., Fenwick M. L., Franklin R. M. Replication of bacteriophage RNA: some properties of the parental-labeled replicative intermediate. J Mol Biol. 1965 Sep;13(2):399–406. doi: 10.1016/s0022-2836(65)80105-x. [DOI] [PubMed] [Google Scholar]
- Friesen J. D. A study of the relationship between polyribosomes and messenger RNA in Escherichia coli. J Mol Biol. 1968 Mar 14;32(2):183–200. doi: 10.1016/0022-2836(68)90003-x. [DOI] [PubMed] [Google Scholar]
- Friesen J. D. Control of bacteriophage RNA synthesis in Escherichia coli. J Mol Biol. 1965 Aug;13(1):220–233. doi: 10.1016/s0022-2836(65)80091-2. [DOI] [PubMed] [Google Scholar]
- Friesen J. D. Control of messenger RNA synthesis and decay in Escherichia coli. J Mol Biol. 1966 Oct;20(3):559–573. doi: 10.1016/0022-2836(66)90011-8. [DOI] [PubMed] [Google Scholar]
- Fromageot H. P., Zinder N. D. Growth of bacteriophage f2 in E. coli treated with rifampicin. Proc Natl Acad Sci U S A. 1968 Sep;61(1):184–191. doi: 10.1073/pnas.61.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallant J., Irr J., Cashel M. The mechanism of amino acid control of guanylate and adenylate biosynthesis. J Biol Chem. 1971 Sep 25;246(18):5812–5816. [PubMed] [Google Scholar]
- Gallant J., Shell L., Bittner R. A novel nucleotide implicated in the response of E. coli to energy source downshift. Cell. 1976 Jan;7(1):75–84. doi: 10.1016/0092-8674(76)90257-9. [DOI] [PubMed] [Google Scholar]
- Heisenberg M. Formation of defective bacteriophage particles by fr amber mutants. J Mol Biol. 1966 May;17(1):136–144. doi: 10.1016/s0022-2836(66)80100-6. [DOI] [PubMed] [Google Scholar]
- Hindley J., Staples D. H., Billeter M. A., Weissmann C. Location of the coat cistron on the RNA of phage Q-beta. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1180–1187. doi: 10.1073/pnas.67.3.1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson L. A., Baldassare J. C. Association of messenger ribonucleic acid with 70S monosomes from down-shifted Escherichia coli. J Bacteriol. 1976 Jul;127(1):637–643. doi: 10.1128/jb.127.1.637-643.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson L. A. Regulation of ribonucleic acid synthesis in Escherichia coli during diauxie lag: accumulation of heterogeneous ribonucleic acid. J Bacteriol. 1970 Jun;102(3):740–746. doi: 10.1128/jb.102.3.740-746.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnsen K., Molin S., Karlström O., Maaloe O. Control of protein synthesis in Escherichia coli: analysis of an energy source shift-down. J Bacteriol. 1977 Jul;131(1):18–29. doi: 10.1128/jb.131.1.18-29.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konigsberg W., Maita T., Katze J., Weber K. Amino-acid sequence of the "Qbeta" coat protein. Nature. 1970 Jul 18;227(5255):271–273. doi: 10.1038/227271a0. [DOI] [PubMed] [Google Scholar]
- LODISH H. F., COOPER S., ZINDER N. D. HOST-DEPENDENT MUTANTS OF THE BACTERIOPHAGE F2. IV. ON THE BIOSYNTHESIS OF A VIRAL RNA POLYMERASE. Virology. 1964 Sep;24:60–70. doi: 10.1016/0042-6822(64)90148-5. [DOI] [PubMed] [Google Scholar]
- Laffler T., Gallant J. A. Stringent control of protein synthesis in E. coli. Cell. 1974 Sep;3(1):47–49. doi: 10.1016/0092-8674(74)90036-1. [DOI] [PubMed] [Google Scholar]
- Lazzarini R. A., Dahlberg A. E. The control of ribonucleic acid synthesis during amino acid deprivation in Escherichia coli. J Biol Chem. 1971 Jan 25;246(2):420–429. [PubMed] [Google Scholar]
- Lund E., Kjeldgaard N. O. Protein synthesis and formation of guanosinetetraphosphate. FEBS Lett. 1972 Oct 1;26(1):306–310. doi: 10.1016/0014-5793(72)80599-4. [DOI] [PubMed] [Google Scholar]
- Meier D., Hofschneider P. H. Effect of rifampicin on the growth of RNA bacteriophage M12. FEBS Lett. 1972 Sep 1;25(1):179–183. doi: 10.1016/0014-5793(72)80480-0. [DOI] [PubMed] [Google Scholar]
- Miller D. L., Cashel M., Weissbach H. The interaction of guanosine 5'-diphosphate, 2' (3')-diphosphate with the bacterial elongation factor Tu. Arch Biochem Biophys. 1973 Feb;154(2):675–682. doi: 10.1016/0003-9861(73)90022-2. [DOI] [PubMed] [Google Scholar]
- Nazar R. N., Wong J. T. Nucleotide changes and the regulation of ribonucleic acid accumulation during growth rate shifts in Escherichia coli. J Biol Chem. 1972 Feb 10;247(3):790–797. [PubMed] [Google Scholar]
- Overby L. R., Barlow G. H., Doi R. H., Jacob M., Spiegelman S. Comparison of two serologically distinct ribonucleic acid bacteriophages. I. Properties of the viral particles. J Bacteriol. 1966 Jan;91(1):442–448. doi: 10.1128/jb.91.1.442-448.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiner A. M. Isolation and mapping of polynucleotide phosphorylase mutants of Escherichia coli. J Bacteriol. 1969 Mar;97(3):1431–1436. doi: 10.1128/jb.97.3.1431-1436.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruscetti F. W., Jacobson L. A. Accumulation of 70S monoribosomes in Escherichia coli after energy source shift-down. J Bacteriol. 1972 Jul;111(1):142–151. doi: 10.1128/jb.111.1.142-151.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schleif R., Hess W., Finkelstein S., Ellis D. Induction kinetics of the L-arabinose operon of Escherichia coli. J Bacteriol. 1973 Jul;115(1):9–14. doi: 10.1128/jb.115.1.9-14.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
- Swedes J. S., Sedo R. J., Atkinson D. E. Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli. J Biol Chem. 1975 Sep 10;250(17):6930–6938. [PubMed] [Google Scholar]
- Wahba A. J., Miller M. J., Niveleau A., Landers T. A., Carmichael G. G., Weber K., Hawley D. A., Slobin L. I. Subunit I of G beta replicase and 30 S ribosomal protein S1 of Escherichia coli. Evidence for the identity of the two proteins. J Biol Chem. 1974 May 25;249(10):3314–3316. [PubMed] [Google Scholar]
- Watson R., Yamazaki H. Expression of the rel gene during R17 phage infection. Biochemistry. 1972 Feb 15;11(4):611–614. doi: 10.1021/bi00754a022. [DOI] [PubMed] [Google Scholar]
- Westover K. C., Jacobson L. A. Control of protein synthesis in Escherichia coli. II. Translation and degradation of lactose operon messenger ribonucleic acid after energy source shift-down. J Biol Chem. 1974 Oct 10;249(19):6280–6287. [PubMed] [Google Scholar]
- Westover K. C., Jacobson L. A. Control of protein synthesis of Escherichia coli. I. Translation and functional inactivation of messenger ribonucleic acid after energy source shift-down. J Biol Chem. 1974 Oct 10;249(19):6272–6279. [PubMed] [Google Scholar]
- Winslow R. M. A consequence of the rel gene during a glucose to lactate downshift in Escherichia coli. The rates of ribonucleic acid synthesis. J Biol Chem. 1971 Aug 10;246(15):4872–4877. [PubMed] [Google Scholar]
- Winslow R. M., Lazzarini R. A. The rates of synthesis and chain elongation of ribonucleic acid in Escherichia coli. J Biol Chem. 1969 Mar 10;244(5):1128–1136. [PubMed] [Google Scholar]
- Yang H. L., Zubay G., Urm E., Heiness G., Cashel M. Effects of guanosine tetraphosphate, guanosine pentaphosphate, and beta-gamma methylenyl-guanosine pentaphosphate on gene expression of Escherichia coli in vitro. Proc Natl Acad Sci U S A. 1974 Jan;71(1):63–67. doi: 10.1073/pnas.71.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida M., Travers A., Clark B. F. Inhibition of translation initiation complex formation by MS1. FEBS Lett. 1972 Jun 15;23(2):163–166. doi: 10.1016/0014-5793(72)80331-4. [DOI] [PubMed] [Google Scholar]
