Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1979 May;30(2):453–461. doi: 10.1128/jvi.30.2.453-461.1979

Transformation-defective mutants of Rous sarcoma virus with longer sizes of genome RNA and their highly frequent occurrences.

M Yoshida, M Yamashita, A Nomoto
PMCID: PMC353348  PMID: 224210

Abstract

Transformation-defective (td) mutants with different sizes of genomic RNA were isolated from the Prague strain of Rous sarcoma virus, subgroup C(PR-C). All six td viruses (tdTYPR-C) isolated from a single UV-irradiated stock of PR-C (clone 2 of TYPR-C) had slightly longer RNA than did the ordinary class b RNA of tdB77 and Rous-associated virus-7. td viruses spontaneously segregated in uncloned TYPR-C also contained genomic RNA of a size similar to tdTYPR-C RNA. On the other hand, two td mutants isolated from another stock of PR-C (LAPR-C) had the class b RNA. Fingerprint analysis confirmed that tdTYPR-C and tdLAPR-C were derived by deletion from clone 2 of TYPR-C and LAPR-C, respectively, and also showed that clone 2 of TYPR-C had sequences in its genome RNA different from those of LAPR-C, although it gave a fingerprinting pattern similar to the latter. These results strongly suggest that differences between the nucleotide sequences in TYPR-C and LAPR-C RNA may result in different extents of deletion.

Full text

PDF
453

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Duesberg P. H. Physical properties of Rous Sarcoma Virus RNA. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1511–1518. doi: 10.1073/pnas.60.4.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Duesberg P. H., Vogt P. K. Gel electrophoresis of avian leukosis and sarcoma viral RNA in formamide: comparison with other viral and cellular RNA species. J Virol. 1973 Sep;12(3):594–599. doi: 10.1128/jvi.12.3.594-599.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Duesberg P. H., Vogt P. K. RNA species obtained from clonal lines of avian sarcoma and from avian leukosis virus. Virology. 1973 Jul;54(1):207–219. doi: 10.1016/0042-6822(73)90130-x. [DOI] [PubMed] [Google Scholar]
  4. Joho R. H., Billeter M. A., Weissmann C. Mapping of biological functions on RNA of avian tumor viruses: location of regions required for transformation and determination of host range. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4772–4776. doi: 10.1073/pnas.72.12.4772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kawai S., Duesberg P. H., Hanafusa H. Transformation-defective mutants of Rous sarcoma virus with src gene deletions of varying length. J Virol. 1977 Dec;24(3):910–914. doi: 10.1128/jvi.24.3.910-914.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lai M. M., Duesberg P. H., Horst J., Vogt P. K. Avian tumor virus RNA: a comparison of three sarcoma viruses and their transformation-defective derivatives by oligonucleotide fingerprinting and DNA-RNA hybridization. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2266–2270. doi: 10.1073/pnas.70.8.2266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lai M. M., Hu S. S., Vogt P. K. Occurrence of partial deletion and substitution of the src gene in the RNA genome of avian sarcoma virus. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4781–4785. doi: 10.1073/pnas.74.11.4781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lee Y. F., Wimmer E. "Fingerprinting" high molecular weight RNA by two-dimensional gel electrophoresis: application to poliovirus RNA. Nucleic Acids Res. 1976 Jul;3(7):1647–1658. doi: 10.1093/nar/3.7.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Martin G. S., Duesberg P. H. The a subunit in the RNA of transforming avian tumor viruses. I. Occurrence in different virus strains. II. Spontaneous loss resulting in nontransforming variants. Virology. 1972 Feb;47(2):494–497. doi: 10.1016/0042-6822(72)90287-5. [DOI] [PubMed] [Google Scholar]
  10. Owada M., Toyoshima K. Analysis on the reproducing and cell-transforming capacities of a temperature sensitive mutant (ts 334) of avian sarcoma virus B77. Virology. 1973 Jul;54(1):170–178. doi: 10.1016/0042-6822(73)90126-8. [DOI] [PubMed] [Google Scholar]
  11. Stehelin D., Guntaka R. V., Varmus H. E., Bishop J. M. Purification of DNA complementary to nucleotide sequences required for neoplastic transformation of fibroblasts by avian sarcoma viruses. J Mol Biol. 1976 Mar 5;101(3):349–365. doi: 10.1016/0022-2836(76)90152-2. [DOI] [PubMed] [Google Scholar]
  12. Stone M. P., Smith R. E., Joklik W. K. 35S a and b RNA subunits of avian RNA tumor virus strains cloned and passaged in chick and duck cells. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 2):859–868. doi: 10.1101/sqb.1974.039.01.100. [DOI] [PubMed] [Google Scholar]
  13. Vogt P. K. Spontaneous segregation of nontransforming viruses from cloned sarcoma viruses. Virology. 1971 Dec;46(3):939–946. doi: 10.1016/0042-6822(71)90092-4. [DOI] [PubMed] [Google Scholar]
  14. Wang L. H., Duesberg P., Beemon K., Vogt P. K. Mapping RNase T1-resistant oligonucleotides of avian tumor virus RNAs: sarcoma-specific oligonucleotides are near the poly(A) end and oligonucleotides common to sarcoma and transformation-defective viruses are at the poly(A) end. J Virol. 1975 Oct;16(4):1051–1070. doi: 10.1128/jvi.16.4.1051-1070.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yoshida M., Ikawa Y. Induction of some transformation-related properties by a transformation-defective mutant of avian sarcoma virus. Virology. 1977 Dec;83(2):444–448. doi: 10.1016/0042-6822(77)90192-1. [DOI] [PubMed] [Google Scholar]
  16. Yoshida M. Strain specificity of changes in adenylate cyclase activity in cells transformed by avian sarcoma viruses. Virology. 1975 Jan;63(1):68–76. doi: 10.1016/0042-6822(75)90371-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES