Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1979 Oct;32(1):1–7. doi: 10.1128/jvi.32.1.1-7.1979

Regulation of late functions in Salmonella bacteriophages P22 and L studied by assaying endolysin synthesis.

W Bode
PMCID: PMC353520  PMID: 396381

Abstract

The rate of endolysin synthesis in Salmonella typhimurium cells infected by bacteriophage P22 or L was taken as a measure for the activity of 23 gene product (the positive regulator for the "late" genes of P22 and L). Endolysin in coded for by gene 19. The amber mutations in gene 23 of P22 and L, used in this study, reduced the rate of endolysin synthesis by a factor of ca. 90 for P22 and of ca. 20 for L. In mixed infections with 19- and 23- mutants the 23 gene products of P22 and L ACT As positive regulators for the respective gene 19 in cis and in trans. Cross-specificity of the 23 gene products, i.e., turning on expression of gene 19 on a chromosome of the other species, could not be demonstrated.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bezdek M., Amati P. Evidence for two immunity regulator systems in temperature bacteriophages P22 and L. Virology. 1968 Dec;36(4):701–703. doi: 10.1016/0042-6822(68)90208-0. [DOI] [PubMed] [Google Scholar]
  2. Bezdek M., Amati P. Properties of P22 and A related Salmonella typhimurium phage. I. General features and host specificity. Virology. 1967 Feb;31(2):272–278. doi: 10.1016/0042-6822(67)90171-7. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Dopatka H. D., Prell H. H. Functional classification of P22 amber mutants. Mol Gen Genet. 1973 Dec 31;127(4):341–347. doi: 10.1007/BF00267104. [DOI] [PubMed] [Google Scholar]
  4. Botstein D., Chan R. K., Waddell C. H. Genetics of bacteriophage P22. II. Gene order and gene function. Virology. 1972 Jul;49(1):268–282. doi: 10.1016/s0042-6822(72)80028-x. [DOI] [PubMed] [Google Scholar]
  5. Botstein D., Herskowitz I. Properties of hybrids between Salmonella phage P22 and coliphage lambda. Nature. 1974 Oct 18;251(5476):584–589. doi: 10.1038/251584a0. [DOI] [PubMed] [Google Scholar]
  6. Botstein D., Waddell C. H., King J. Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. J Mol Biol. 1973 Nov 15;80(4):669–695. doi: 10.1016/0022-2836(73)90204-0. [DOI] [PubMed] [Google Scholar]
  7. Couturier M., Dambly C., Thomas R. Control of development in temperate bacteriophages. V. Sequential activation of the viral functions. Mol Gen Genet. 1973 Feb 2;120(3):231–252. doi: 10.1007/BF00267155. [DOI] [PubMed] [Google Scholar]
  8. Dambly C., Couturier M. A minor Q-independent pathway for the expression of the late genes in bacteriophage lambda. Mol Gen Genet. 1971;113(3):244–250. doi: 10.1007/BF00339545. [DOI] [PubMed] [Google Scholar]
  9. Echols H., Court D., Green L. On the nature of cis-acting regulatory proteins and genetic organization in bacteriophage: the example of gene Q of bacteriophage lambda. Genetics. 1976 May;83(1):5–10. doi: 10.1093/genetics/83.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gough M., Levine M. The circularity of the phage P22 linkage map. Genetics. 1968 Feb;58(2):161–169. doi: 10.1093/genetics/58.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gough M., Tokuno S. Further structural and functional analogies between the repressor regions of phages P22 and lambda. Mol Gen Genet. 1975;138(1):71–79. doi: 10.1007/BF00268829. [DOI] [PubMed] [Google Scholar]
  12. Hilliker S., Botstein D. An early regulatory gene of Salmonella phage P22 analogous to gene N of coliphage lambda. Virology. 1975 Dec;68(2):510–524. doi: 10.1016/0042-6822(75)90291-3. [DOI] [PubMed] [Google Scholar]
  13. Hilliker S., Botstein D. Specificity of genetic elements controlling regulation of early functions in temperate bacteriophages. J Mol Biol. 1976 Sep 25;106(3):537–566. doi: 10.1016/0022-2836(76)90251-5. [DOI] [PubMed] [Google Scholar]
  14. Josslin R. The lysis mechanism of phage T4: mutants affecting lysis. Virology. 1970 Mar;40(3):719–726. doi: 10.1016/0042-6822(70)90216-3. [DOI] [PubMed] [Google Scholar]
  15. Kahmann R., Prell H. Complementation between P22 amber mutants and phage L. Mol Gen Genet. 1971;113(4):363–366. doi: 10.1007/BF00272337. [DOI] [PubMed] [Google Scholar]
  16. Kolstad R. A., Prell H. H. An amber map of Salmonella phage P22. Mol Gen Genet. 1969 Aug 15;104(4):339–350. doi: 10.1007/BF00334233. [DOI] [PubMed] [Google Scholar]
  17. Lew K., Casjens S. Identification of early proteins coded by bacteriophage P22. Virology. 1975 Dec;68(2):525–533. doi: 10.1016/0042-6822(75)90292-5. [DOI] [PubMed] [Google Scholar]
  18. Mount D. W., Harris A. W., Fuerst C. R., Siminovitch L. Mutations in bacteriophage lambda affecting particle morphogenesis. Virology. 1968 May;35(1):134–149. doi: 10.1016/0042-6822(68)90313-9. [DOI] [PubMed] [Google Scholar]
  19. Prell H. H. Px, a hybrid between the serologically unrelated and heteroimmune Salmonella bacteriophages P22 and Py. I. Some properties of Py and Px, genetic evidence for the hybrid nature of Px, and phenotypic mixing between P22, Py and Px. Mol Gen Genet. 1970;108(2):167–183. doi: 10.1007/BF02430523. [DOI] [PubMed] [Google Scholar]
  20. Prell H. H. Regulation of gene expression in Salmonella phage P22. I. Genetic experiments involving P22 and Px1. Mol Gen Genet. 1973 Dec 31;127(4):327–339. doi: 10.1007/BF00267103. [DOI] [PubMed] [Google Scholar]
  21. Prell H. H. Regulation of gene expression in Salmonella phage P22. II. Regulation of expression of late functions. Mol Gen Genet. 1975;136(4):351–360. doi: 10.1007/BF00341719. [DOI] [PubMed] [Google Scholar]
  22. Roberts J. W. Transcription termination and late control in phage lambda. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3300–3304. doi: 10.1073/pnas.72.9.3300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SMITH H. O., LEVINE M. TWO SEQUENTIAL REPRESSIONS OF DNA SYNTHESIS IN THE ESTABLISHMENT OF LYSOGENY BY PHAGE P22 AND ITS MUTANTS. Proc Natl Acad Sci U S A. 1964 Aug;52:356–363. doi: 10.1073/pnas.52.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Susskind M. M., Botstein D. Molecular genetics of bacteriophage P22. Microbiol Rev. 1978 Jun;42(2):385–413. doi: 10.1128/mr.42.2.385-413.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Whitfield H. J., Jr, Martin R. G., Ames B. N. Classification of aminotransferase (C gene) mutants in the histidine operon. J Mol Biol. 1966 Nov 14;21(2):335–355. doi: 10.1016/0022-2836(66)90103-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES