Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1979 Oct;32(1):131–139. doi: 10.1128/jvi.32.1.131-139.1979

Mice with Spontaneous Mammary Tumors Develop Type-Specific Neutralizing and Cytotoxic Antibodies Against the Mouse Mammary Tumor Virus Envelope Protein gp52

Gerald Schochetman 1, Larry O Arthur 1, Cedric W Long 1, Richard J Massey 1
PMCID: PMC353535  PMID: 94356

Abstract

Sera from C3H mammary tumor-bearing mice contain cytotoxic antibodies for mouse mammary tumor virus (MMTV)-producing cells, based on 51Cr release in a complement-dependent serum cytotoxicity assay. The cytotoxic antibodies could be absorbed by purified C3H MMTV gp52 and C3H MMTV-infected cat cells (C3H [MMTV] CrFK) containing cell surface MMTV gp52. However, purified MMTV p27 and uninfected CrFK cat cells were negative. Absorption of the sera with GR (MMTV) CrFK cells also removed all of the cytotoxicity, whereas absorption with RIII (MMTV) CrFK cells was negative, even though all three infected cat cells contained equivalent amounts of gp52. The same C3H cytotoxic sera also neutralized the focus-forming capacity of a C3H MMTV pseudotype of Kirsten sarcoma virus containing MMTV gp52. In contrast, sera from mammary tumor-bearing GR and RIII mice did not neutralize the pseudotype. Furthermore, neutralization could be achieved only by anti-gp52 but not by anti-gp36, -p27, -p14, or -p10 C3H MMTV sera. The gp52's of C3H, GR, and RIII MMTV could also be distinguished by using a type-specific competition radioimmunoassay employing 125I-gp52 of C3H MMTV and a hyperimmune rabbit anti-C3H MMTV serum. To demonstrate these differences directly, we studied the primary structure of gp52 on the surface of the C3H, GR, and RIII (MMTV) CrFK cells. Two-dimensional tryptic peptide maps of the cell surface lactoper-oxidase-catalyzed iodinated gp52's revealed a greater number of peptides common to the gp52's of C3H and GR MMTVs than to RIII MMTV gp52. These results demonstrate that gp52 is a major target antigen for both cytotoxic and neutralizing antibodies, that the cell surface and virion-associated gp52's of C3H, GR, and RIII MMTV contain both group- and type-specific determinants, and that C3H and GR MMTV gp52's are antigenically more related to each other than to RIII MMTV gp52. Furthermore, C3H mammary tumor-bearing mice develop type-specific antibodies capable of recognizing unique gp52 determinants and, therefore, are able to distinguish the gp52 of C3H MMTV from the gp52's of GR and RIII MMTV.

Full text

PDF
131

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur L. O., Bauer R. F., Orme L. S., Fine D. L. Coexistence of the mouse mammary tumor virus (MMTV) major glycoprotein and natural antibodies to MMTV in sera of mammary tumor-bearing mice. Virology. 1978 Jun 15;87(2):266–275. doi: 10.1016/0042-6822(78)90132-0. [DOI] [PubMed] [Google Scholar]
  2. Arthur L. O., Fine D. L. Immunological characterization of mouse mammary tumor virus p10 and its presence in mammary tumors and sera of tumor-bearing mice. J Virol. 1979 Apr;30(1):148–156. doi: 10.1128/jvi.30.1.148-156.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arthur L. O., Fine D. L. Naturally occurring humoral immunity to murine mammary tumor virus (MuMTV) and MuMTV GP52 in mice with low mammary tumor incidence. Int J Cancer. 1978 Dec;22(6):734–740. doi: 10.1002/ijc.2910220616. [DOI] [PubMed] [Google Scholar]
  4. Boiocchi M., Nowinski R. C. Polymorphism in the major core protein (p30) of murine leukemia viruses as identified by mouse antisera. Virology. 1978 Feb;84(2):530–535. doi: 10.1016/0042-6822(78)90269-6. [DOI] [PubMed] [Google Scholar]
  5. Fine D. L., Arthur L. O., PLOWMAN J. K., Hillman E. A., Klein F. In vitro system for production of mouse mammary tumor virus. Appl Microbiol. 1974 Dec;28(6):1040–1046. doi: 10.1128/am.28.6.1040-1046.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gautsch J. W., Lerner R., Howard D., Teramoto Y. A., Schlom J. Strain-specific markers for the major structural proteins of highly oncogenic murine mammary tumor viruses by tryptic peptide analyses. J Virol. 1978 Sep;27(3):688–699. doi: 10.1128/jvi.27.3.688-699.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howard D. K., Colcher D., Teramoto Y. A., Young J. M., Schlom J. Characterization of mouse mammary tumor viruses propagated in heterologous cells. Cancer Res. 1977 Aug;37(8 Pt 1):2696–2704. [PubMed] [Google Scholar]
  9. Ihle J. N., Arthur L. O., Fine D. L. Autogenous immunity to mouse mammary tumor virus in mouse strains of high and low mammary tumor incidence. Cancer Res. 1976 Aug;36(8):2840–2844. [PubMed] [Google Scholar]
  10. Ihle J. N., Domotor J. J., Jr, Bengali K. M. Characterization of the type and group specificities of the immune response in mice to murine leukemia viruses. J Virol. 1976 Apr;18(1):124–131. doi: 10.1128/jvi.18.1.124-131.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson T. R., Massey R. J., Deinhardt F. Lymphocyte and antibody cytotoxicity to tumor cells measured by a micro- 51 chromium release assay. Immunol Commun. 1972;1(3):247–261. doi: 10.3109/08820137209022939. [DOI] [PubMed] [Google Scholar]
  12. Kessler S. W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol. 1975 Dec;115(6):1617–1624. [PubMed] [Google Scholar]
  13. Morris V. L., Medeiros E., Ringold G. M., Bishop J. M., Varmus H. E. Comparison of mouse mammary tumor virus-specific DNA in inbred, wild and Asian mice, and in tumors and normal organs from inbred mice. J Mol Biol. 1977 Jul;114(1):73–91. doi: 10.1016/0022-2836(77)90284-4. [DOI] [PubMed] [Google Scholar]
  14. O'Donnell P. V., Stockert E. Induction of GIX antigen and gross cell surface antigen after infection by ecotropic and xenotropic murine leukemia viruses in vitro. J Virol. 1976 Dec;20(3):545–554. doi: 10.1128/jvi.20.3.545-554.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Owens R. B., Hackett A. J. Tissue culture studies of mouse mammary tumor cells and associated viruses. J Natl Cancer Inst. 1972 Nov;49(5):1321–1332. [PubMed] [Google Scholar]
  16. Schochetman G., Fine D. L., Massey R. J. Mouse mammary tumor virus and murine leukemia virus cell surface antigens on virus producer and nonproducer mammary epithelial tumor cells. Virology. 1978 Jul 15;88(2):379–383. doi: 10.1016/0042-6822(78)90294-5. [DOI] [PubMed] [Google Scholar]
  17. Schochetman G., Long C. W., Oroszlan S., Arthur L., Fine D. L. Isolation of separate precursor polypeptides for the mouse mammary tumor virus glycoproteins and nonglycoproteins. Virology. 1978 Mar;85(1):168–174. doi: 10.1016/0042-6822(78)90421-x. [DOI] [PubMed] [Google Scholar]
  18. Schochetman G., Long C., Massey R. Generation of a mouse mammary tumor virus (MMTV) pseudotype of Kirsten sarcoma virus and restriction of MMTV gag expression in heterologous infected cells. Virology. 1979 Sep;97(2):342–353. doi: 10.1016/0042-6822(79)90345-3. [DOI] [PubMed] [Google Scholar]
  19. Staats J. Standardized nomenclature for inbred strains of mice: fifth listing. Cancer Res. 1972 Aug;32(8):1609–1646. [PubMed] [Google Scholar]
  20. Strand M., August J. T. Structural proteins of mammalian oncogenic RNA viruses: multiple antigenic determinants of the major internal protein and envelope glycoprotein. J Virol. 1974 Jan;13(1):171–180. doi: 10.1128/jvi.13.1.171-180.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Teramoto Y. A., Kufe D., Schlom J. Type-specific antigenic determinants on the major external glycoprotein of high- and low-oncogenic murine mammary tumor viruses. J Virol. 1977 Nov;24(2):525–533. doi: 10.1128/jvi.24.2.525-533.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Witte O. N., Weissman I. L. Oncornavirus budding: kinetics of formation and utilization of viral membrane glycoprotein. Virology. 1976 Feb;69(2):464–473. doi: 10.1016/0042-6822(76)90477-3. [DOI] [PubMed] [Google Scholar]
  23. Yagi M. J., Tomana M., Stutzman R. E., Robertson B. H., Compans R. W. Structural components of mouse mammary tumor virus. III. Composition and tryptic peptides of virion polypeptides. Virology. 1978 Dec;91(2):291–304. doi: 10.1016/0042-6822(78)90377-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES