Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1977 Jan;21(1):16–23. doi: 10.1128/jvi.21.1.16-23.1977

Photodynamic treatment of herpes simplex virus during its replicative cycle.

N C Khan, J L Melnick, N Biswal
PMCID: PMC353786  PMID: 189063

Abstract

Photodynamic treatment of herpes simplex virus type 1-infected hamster embryo fibroblasts (LSH strain) with a low concentration of proflavine (0.08 mug/10(5) cells per ml), a 3-9-diamine acridine dye, inhibited production not only of infectious progeny but also of virion particles. However, there was no appreciable inhibition of viral or cellular DNA synthesis, even when the infected cells were repeatedly exposed to this low concentration of dye and light during the replication cycle of the virus. It thus appears that photodynamic treatment of infected cells interferes with the processes involved in virus maturation.

Full text

PDF
16

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S., Lerman L. S. Effects of 9-aminoacridine on bacteriophage T4 deoxyribonucleic acid synthesis. J Mol Biol. 1970 Jun 14;50(2):263–277. doi: 10.1016/0022-2836(70)90191-9. [DOI] [PubMed] [Google Scholar]
  2. Bandopadhyay U., Poddar R. K. Reactivation of photoinactivated single-stranded DNA bacteriophage phi X174 by UV-irradiated Escherichia coli cells. J Virol. 1973 Dec;12(6):1204–1208. doi: 10.1128/jvi.12.6.1204-1208.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biswal N., Murray B. K., Benyesh-Melnick M. Ribonucleotides in newly synthesized DNA of herpes simplex virus. Virology. 1974 Sep;61(1):87–99. doi: 10.1016/0042-6822(74)90244-x. [DOI] [PubMed] [Google Scholar]
  4. Bronson D. L., Graham B. J., Ludwig H., Benyesh-Melnick M., Biswal N. Studies on the relatedness of herpes viruses through DNA-RNA hybridization. Biochim Biophys Acta. 1972 Jan 18;259(1):24–34. doi: 10.1016/0005-2787(72)90470-4. [DOI] [PubMed] [Google Scholar]
  5. Campbell W. F., Murray B. K., Biswal N., Benyesh-Melnick M. Restriction of herpes simplex virus type 1 replication in oncornavirus-transformed cells. J Natl Cancer Inst. 1974 Mar;52(3):757–761. doi: 10.1093/jnci/52.3.757. [DOI] [PubMed] [Google Scholar]
  6. Chaudhuri U. C., Poddar R. K. Identification of the block in the intracellular replication of single-stranded DNA of photodynamically inactivated bacteriophage phi X174. J Virol. 1973 Mar;11(3):368–371. doi: 10.1128/jvi.11.3.368-371.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cramer W. A., Uretz R. B. Acridine orange-sensitized photoinactivation of T4 bacteriophage. II. Genetic studies with photoinactivated phage. Virology. 1966 Jul;29(3):469–479. doi: 10.1016/0042-6822(66)90223-6. [DOI] [PubMed] [Google Scholar]
  8. DE MARS R. I. The production of phage-related materials when bacteriophage development in interrupted by proflavine. Virology. 1955 May;1(1):83–99. doi: 10.1016/0042-6822(55)90007-6. [DOI] [PubMed] [Google Scholar]
  9. Doller E., Duff R., Rapp F. Resistance of hamster cells transformed by herpes simplex virus type 2 to superinfection by herpes simplex viruses. Intervirology. 1973;1(3):154–167. doi: 10.1159/000148842. [DOI] [PubMed] [Google Scholar]
  10. Graham B. J., Ludwig H., Bronson D. L., Benyesh-Melnick M., Biswal N. Physicochemical properties of the DNA of herpes viruses. Biochim Biophys Acta. 1972 Jan 18;259(1):13–23. doi: 10.1016/0005-2787(72)90469-8. [DOI] [PubMed] [Google Scholar]
  11. HIATT C. W., KAUFMAN E., HELPRIN J. J., BARON S. Inactivation of viruses by the photodynamic action of toluidine blue. J Immunol. 1960 May;84:480–484. [PubMed] [Google Scholar]
  12. Kadish L. J., Fisher D. B., Pardee A. B. Photodynamic inactivation of free and vegatative bacteriophage T4. Biochim Biophys Acta. 1967 Mar 29;138(1):57–65. doi: 10.1016/0005-2787(67)90585-0. [DOI] [PubMed] [Google Scholar]
  13. Khan N. C., Poddar R. K. Photodynamic inactivation of antigenic determinants of single-stranded DNA bacteriophage phi chi 174. J Virol. 1974 May;13(5):997–1000. doi: 10.1128/jvi.13.5.997-1000.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McCombs R. M., Melnick M. B., Brunschwig J. P. Biophysical studies of vesicular stomatitis virus. J Bacteriol. 1966 Feb;91(2):803–812. doi: 10.1128/jb.91.2.803-812.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rapp F., Li J. L., Jerkofsky M. Transformation of mammalian cells by DNA-containing viruses following photodynamic inactivation. Virology. 1973 Oct;55(2):339–346. doi: 10.1016/0042-6822(73)90173-6. [DOI] [PubMed] [Google Scholar]
  16. SUSMAN M., PIECHOWSKI M. M. STUDIES ON PHAGE DEVELOPMENT. I. AN ACRIDINE-SENSITIVE CLOCK. Virology. 1965 Jun;26:163–174. doi: 10.1016/0042-6822(65)90043-7. [DOI] [PubMed] [Google Scholar]
  17. UCHIDA H. Studies in the synthesis of bacterial viruses. I. On the accumulation of phage precursor nucleic acid when the maturation step is inhibited by acriflavine. Jpn J Exp Med. 1958 Apr;28(2):59–66. [PubMed] [Google Scholar]
  18. Vonka V., Benyesh-Melnick M. Interactions of human cytomegalovirus with human fibroblasts. J Bacteriol. 1966 Jan;91(1):213–220. doi: 10.1128/jb.91.1.213-220.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WALLIS C., MELNICK J. L. IRREVERSIBLE PHOTOSENSITIZATION OF VIRUSES. Virology. 1964 Aug;23:520–527. doi: 10.1016/0042-6822(64)90236-3. [DOI] [PubMed] [Google Scholar]
  20. Wallis C., Melnick J. L. Photodynamic inactivation of animal viruses: a review. Photochem Photobiol. 1966 Mar;4(2):159–170. doi: 10.1111/j.1751-1097.1965.tb05733.x. [DOI] [PubMed] [Google Scholar]
  21. Witmer H., Fraser D. Photodynamic action of proflavine on coliphage T3. 3. Damages to the deoxyribonucleic acid associated with Rxl and Rx2. J Virol. 1971 Mar;7(3):323–331. doi: 10.1128/jvi.7.3.323-331.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES